Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-hl5gf Total loading time: 0.25 Render date: 2023-01-28T04:00:34.554Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Effect of Structural Phase Transition on Thermally Activated Time-of-Flight Charge Carrier Mobility and Field Effect Transport in Diindenoperylene Single Crystals

Published online by Cambridge University Press:  26 February 2011

Ashutosh Kumar Tripathi
Affiliation:
a.tripathi@physik.uni-stuttgart.de, University of Stuttgart, 3rd Institute of Physics, Pfaffenwaldring 57, Stuttgart, D 70550, Germany
Jens Pflaum
Affiliation:
j.pflaum@physik.uni-stuttgart.de, University of Stuttgart, 3rd Institute of Physics, Pfaffenwaldring 57, Stuttgart, 70550, Germany
Get access

Abstract

We report on the growth, the structural and the electronic characterization of semiconducting Diindenoperylene (DIP) single crystals. Temperature dependent x-ray measurements reveal a structural phase transition occurring at around 370 K. Temperature dependent time-of-flight (TOF) hole mobility shows a thermally activated behavior up to the phase transition temperature with an activation energy of ∼ 180 meV. A field effect is successfully demonstrated on transistors based on DIP single crystal and yields a room temperature hole mobility of about ∼ 2×10−5 cm2/Vs. Unlike TOF measurements, no electron transport was observed in field-effect transistors (FETs) geometry which could be attributed to the large injection barrier for electrons at the DIP-Ag-contact interface in contrast to the injection barrier for holes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Karl, N., in Organic Electronic Materials, Part II: Low Molecular Weight Organic Solids, edited by Farchioni, R. and Grosso, G., (Springer, Berlin, 2001), pp. 283.CrossRefGoogle Scholar
2. Warta, W., Karl, N., Phys. Rev. B, 32, 1172 (1985).CrossRefGoogle Scholar
3. Boer, R.W.I. de, Klapwijk, T.M., and Morpurgo, A.F., Appl. Phys. Lett., 83,4345 (2003).CrossRefGoogle Scholar
4. Jurchescu, O.D., Baas, J., and Palstra, T.T.M., Appl. Phys. Lett., 84, 3061 (2004).CrossRefGoogle Scholar
5. Sundar, V.C., et al., Science, 303, 1644, (2004).CrossRefGoogle Scholar
6. Karl, N., Synth. Met. 649, 133, (2003).Google Scholar
7. Sellner, S., et al., Adv. Mater., 16, 1750 (2004).CrossRefGoogle Scholar
8. Tripathi, A.K. and Pflaum, J., Appl. Phys. Lett., 89, 082103 (2006).CrossRefGoogle Scholar
9. Pflaum, J., Niemax, J., Tripathi, A.K., Mater. Res. Soc. Symp. Proc., 871E, J 7.2 (2005).CrossRefGoogle Scholar
10. Kepler, R.G., Phys. Rev., 119, 1226 (1960).CrossRefGoogle Scholar
11. Heinrich, M., Pflaum, J., Tripathi, A.K., Steigerwald, M., and Siegrist, T. (unpublished).Google Scholar
12. Dürr, A.C., et al., Appl. Phys. Lett., 81, 2276 (2002).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of Structural Phase Transition on Thermally Activated Time-of-Flight Charge Carrier Mobility and Field Effect Transport in Diindenoperylene Single Crystals
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Effect of Structural Phase Transition on Thermally Activated Time-of-Flight Charge Carrier Mobility and Field Effect Transport in Diindenoperylene Single Crystals
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Effect of Structural Phase Transition on Thermally Activated Time-of-Flight Charge Carrier Mobility and Field Effect Transport in Diindenoperylene Single Crystals
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *