Skip to main content Accessibility help
×
Home
Hostname: page-component-59df476f6b-tf7pm Total loading time: 0.152 Render date: 2021-05-18T00:34:49.024Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Effect of Nickel Silicide Induced Dopant Segregation on Vertical Silicon Nanowire Diode Performance

Published online by Cambridge University Press:  10 May 2012

W. Lu
Affiliation:
School of Electrical & Electronics Engineering, Nanyang Technological University, Singapore. Institute of Microelecrtonics, A*STAR (Agency of Technology & Research), Singapore. GLOBALFOUNDRIES Singapore Pte. Ltd., Singapore.
K. L. Pey
Affiliation:
School of Electrical & Electronics Engineering, Nanyang Technological University, Singapore. Singapore University of Technology & Design (SUTD), Singapore.
N. Singh
Affiliation:
Institute of Microelecrtonics, A*STAR (Agency of Technology & Research), Singapore.
K. C. Leong
Affiliation:
GLOBALFOUNDRIES Singapore Pte. Ltd., Singapore.
Q. Liu
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore.
C. L. Gan
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore.
G. Q. Lo
Affiliation:
Institute of Microelecrtonics, A*STAR (Agency of Technology & Research), Singapore.
D. -L. Kwong
Affiliation:
Institute of Microelecrtonics, A*STAR (Agency of Technology & Research), Singapore.
C. S. Tan
Affiliation:
School of Electrical & Electronics Engineering, Nanyang Technological University, Singapore.
Get access

Abstract

In this work, Dopant Segregated Schottky Barrier (DSSB) and Schottky Barrier (SB) vertical silicon nanowire (VSiNW) diodes were fabricated on p-type Si substrate using CMOS-compatible processes to investigate the effects of segregated dopants at the silicide/silicon interface and different annealing processes on nickel silicide formation in DSSB VSiNW diodes. With segregated dopants at the silicide/silicon interface, VSiNW diodes showed higher on-current, due to an enhanced carrier tunneling, and much lower leakage current. This can be attributed to the altered energy bands caused by the accumulated Arsenic dopants at the interface. Moreover, DSSB VSiNW diodes also gave ideality factor much closer to unity and exhibited lower electron SBH (ΦBn ) than SB VSiNW diodes. This proved that interfacial accumulated dopants could impede the inhomogeneous nature of the Schottky diodes and simultaneously, minimize the effect of Fermi level pinning and ionization of surface defect states. Comparing the impact of different silicide formation annealing using DSSB VSiNW diodes, the 2-step anneal process reduces the silicide intrusion length within the SiNW by ~ 5X and the silicide interface was smooth along the (100) direction. Furthermore, the 2-step DSSB VSiNW diode also exhibited much lower leakage current and an ideality factor much closer to unity, as compared to 1-step DSSB VSiNW diode.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

Song, Y., Zhou, H., Xu, Q., Niu, J., Yan, J., Zhao, C., Zhong, H., IEEE Electron Device Lett., 31, 1377 (2010).CrossRef
Tan, E. J., Pey, K. L., Singh, N., Lo, G. Q., Chi, D. Z., Chin, Y. K., Tang, L. J., Lee, P. S., Ho, C. K. F., IEEE Electron Device Lett., 29, 902 (2008).CrossRef
Chin, Y. K., Pey, K. L., Singh, N., Lo, G. Q., Tan, K. H., Ong, C. Y., Tan, L. H., IEEE Electron Device Lett., 30, 843 (2009).CrossRef
Kwong, D.-L., Li, X., Sun, Y., Ramanathan, G., Chen, Z. X., Wong, S. M., Li, Y., Shen, N. S., Buddharaju, K., Yu, Y. H., Lee, S. J., Singh, N., and Lo, G. Q., J. Nanotechnol., vol. 2012, Article ID 492121, 21 pages, 2012.CrossRef
Tu, K. N., Thompson, R. D., Tsaur, B. Y., Appl. Phys. Lett., 38, 626 (1981).CrossRef
Kim, J. R., Oh, H., So, H. M., Kim, J. J., Kim, J., Lee, C. J., Lyu, S. C., Nanotechnology, 13, 701 (2002).CrossRef
Tung, R. T., Phys. Rev. Lett., 52, 461 (1984).CrossRef
Batra, I. P., Ciraci, S., Phys. Rev. B: Condens. Matter Mater. Phys., 33, 4312 (1986).CrossRef
Chen, H. -Y., Lin, C. -Yi, Chen, M. –C., Huang, C. –C. and Chien, C. –H., J. Electrochem. Soc., 158, H840 (2011).CrossRef
Qiu, Z., Zhang, Z., Östling, M., Zhang, S. –L., IEEE Trans. Electron Devices, 55, 396 (2008).CrossRef
Knoch, J., Zhang, M., Feste, S. and Mantl, S., Microelectron. Eng., 84, 2563 (2007).CrossRef
Lavoie, C., d’Heurle, F.M., Detavernier, C., Cabral, C. Jr., Microelectron. Eng., 70, 144 (2003).CrossRef
Foggiato, J., Yoo, W. S., Ouaknine, M., Murakami, T., Fukada, T., Mater. Sci. Eng., B, 56, 114115 (2004).
Geng, Li, Magyari-Kope, B. and Nishi, Y., IEEE Electron Device Lett., 30, 963 (2009).CrossRef
Yun, T., Yu-Long, J., Yu, C., Fang, L., and Bing-Zong, L., Semiconductor Science and Technology, 17, 83 (2002).
Lu, J. P., Miles, D. S., DeLoach, J., Yue, D. F., Chen, P. J., Bonifield, T., Crank, S., Yu, S. F., Mehrad, F., Obeng, Y., Ramappa, D. A., Corum, D., Guldi, R. L., Robertson, L.S., Liu, X., Hall, L. H., Xu, Y. Q., Lin, B. Y., Griffin, A. J. Jr., Johnson, F. S., Grider, T., Mercer, D. and Montgomery, C., International Workshop on Junction Technology 2006, 127 (2006).
Arai, H., Kamimura, H., Sato, S., Kakushima, K., Ahmet, P., Tsutsui, K., Sugii, N., Natori, K., Hattori, T., and Iwai, H., “Annealing Reaction for Ni Silicidaton of Si Nanowire,” ECS Transactions, 25, 447 (2009).CrossRefGoogle Scholar
Lu, W., Pey, K. L., Singh, N., Leong, K. C., Gan, C. L. and Tan, C. S., IEEE Electron Device Lett., submitted (2012).

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of Nickel Silicide Induced Dopant Segregation on Vertical Silicon Nanowire Diode Performance
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effect of Nickel Silicide Induced Dopant Segregation on Vertical Silicon Nanowire Diode Performance
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effect of Nickel Silicide Induced Dopant Segregation on Vertical Silicon Nanowire Diode Performance
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *