Hostname: page-component-7d684dbfc8-7nm9g Total loading time: 0 Render date: 2023-09-27T09:59:05.925Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Effect of Nanostructure on the Thermal Oxidation of Atomized Iron

Published online by Cambridge University Press:  26 February 2011

Mohit Kumar
Affiliation:, Rochester Institute of Technology, Materials Science and Engineering, United States
Naveen Rawat
Affiliation:, Rochester Institute of Technology, Materials Science and Engineering, United States
Kalathur S Santhanam
Affiliation:, Rochester Institute of Technology, Materials Science and Engineering and Department of Chemistry, United States
Get access


The effect of nanostructure on the thermal oxidation of atomized iron has been investigated. Above 500°C atomized iron is oxidized in the presence of air. However, when iron is compacted with multiwalled carbon nanotubes (MWCNT) this oxidation is shifted by more than 100°C. Iron is protected by the nanostructure environment A large number of compositions of atomic ratios of iron and MWCNT have been examined in this study to understand the effect in detail. The effect of nanostructure in the thermal oxidation of iron is interpreted as due to iron atom experiencing extensive overlap and confinement effect. causing spin transfer. Based on theoretical calculations reported in the literature this confinement effect of iron is suggested to produce a transformation from 3d64s2 to an effective configuration of 3d84s0 producing spintronics effect.

Research Article
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1. Fagan, S.B. and Mota, R., Physical Review B, 67(20), 2054 (2003)Google Scholar
2. Fagan, S.B., Mota, R., Antonio, J.R. and Fazzio, A., Physica B: 340342, 982 (2003)Google Scholar
3. Weissmann, M., Garcia, G., Kiwi, M. and Ramirez, R., Physical Review B, 70(20), 201401 (2004)CrossRefGoogle Scholar
4. Yagi, Y., Briere, T.M., Sluiter, M.H.F., Kumar, V., Farajian, A.A. and Kawazoe, Y., Physical Review B, 69(7), 75411 (2004)CrossRefGoogle Scholar
5. Ago, H., Nakamura, K., Uehara, N., and Tsuji, N.M., Journal of Physical Chemistry B, 108(49), 18908 (2004)CrossRefGoogle Scholar
6. Meng, F.Y., Zhou, L.G., Shi, S. and Yang, R., NASA Conference Publication 2003- 212319(Proceedings of the Seventh Applied Diamond Conference/Third Frontier Carbon Technology Joint Conference, 2003), 65-69 (2003)Google Scholar
7. Cespedes, O., Ferreira, M.S., Sanvito, S., Kociak, M. and Coey, J.M.D., Journal of Physics: Condensed Matter,16(10), L155 (2004)Google Scholar
8. Ferreira, M.S. and Sanvito, S., Physical Review B, 69(3), 035407 (2004)Google Scholar
9. Ferreira, M.S. and Sanvito, S., Los Alamos National Laboratory, Preprint Archive, Condensed Matter,1-14, arXiv:cond-mat/0311637 (2003).Google Scholar
10. Setlur, A.A., Dai, J.Y., Lauerhaas, J.M., Washington, P.L. and Chang, R.P.H., J. Mater. Res.,13, 2139 (1998)CrossRefGoogle Scholar
11. Duffy, D.M. and Blackman, J.A., Phys. Rev. B, 58, 7443 (1998)CrossRefGoogle Scholar
12. Krüger, P., Taguchi, M., Parlebas, J.C. and Kotani, A., ibid., 59, 15 093 (1999)Google Scholar
13. Krüger, P., Rakotomahevitra, A., Parlebas, J.C. and Demangeat, C., ibid., 57, 5276 (1998)Google Scholar
14. Peng, S.S., Cooper, B.R. and Hao, Y.G., Philos. Mag. B, 73, 611 (1996)CrossRefGoogle Scholar
15. Mintmire, J.W., Dunlap, B.I. and White, C.T., Phys. Rev. Lett., 68, 631 (1992)CrossRefGoogle Scholar
16. Binns, C., Baker, S.H., Keen, A.M., Mozley, S.N., Norris, C., Derbyshire, H.S. and Bayliss, S.C., Phys. Rev. B, 53, 7451 (1996) M. Bumer, J. Libuda and H.J. Freund, Surf.. Sci., 327, 321 (1995)CrossRefGoogle Scholar
17. Caudron, E. and Buscail, H., Materials Chemistry and Physics, 64(1), 2936 (2000)CrossRefGoogle Scholar
18. Kamolfornwijit, W., Lilano, L., Moline, C.R. and Hart, T., West, Environ., O.R.,. Sci.Technol., 38, 5757 (2004)CrossRefGoogle Scholar
19. Croston, M., Langston, J., Takacs, G., Morrill, T.C., Miri, M., Santhanam, K.S.V. and Ajayan, P., Int. J. Nanoscience, 2002, 1, 285 CrossRefGoogle Scholar
20. Croston, M., Langston, J., Sangoi, R. and Santhanam, K.S.V., Int. J. Nanoscience, 2002, 1 277 CrossRefGoogle Scholar
21. Bom, D., Andrews, R., Jacques, D., Anthony, J., . Chen, B., Meier, and Selegue, M.S., J.P., Nano Letters, 2002, 2, 615 Google Scholar
22. Zhang, M., Yudasaka, M., Bandow, S., Iijima, S., Chemical Physics Letters, 2003, 369, 680 CrossRefGoogle Scholar
23. Ajayan, P.M., Zhou, O., Topics in Applied Physics 2001, 80, 391425.CrossRefGoogle Scholar
24. Sharp, S.L., Kumar, G., Vicenzi, E.P., Bocarsly, A.B., Chem. Mater., 1998, 10, 880 CrossRefGoogle Scholar
25. Kataby, G., Prozorov, T., Yu. Koltypin, Cohen, H., Sukenik, C.N., Ulman, A. and Gedanken, A., Langmuir, 1997, 13, 6151 CrossRefGoogle Scholar