Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-96qlp Total loading time: 0.299 Render date: 2022-11-30T01:57:54.424Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Effect of Ionic Strength on the Stability of Colloids Released from Injection Grout Silica Sol

Published online by Cambridge University Press:  01 February 2011

Pirkko L Holtta
Affiliation:
pirkko.holtta@helsinki.fi, University of Helsinki, Department of Chemistry, University of Helsinki, Finland
Mari Lahtinen
Affiliation:
mari.lahtinen@helsinki.fi, University of Helsinki, Department of Chemistry, Helsinki, Finland
Martti Hakanen
Affiliation:
martti.hakanen@helsinki.fi, University of Helsinki, Department of Chemistry, University of Helsinki, Finland
Jukka Lehto
Affiliation:
jukka.lehto@helsinki.fi, University of Helsinki, Department of Chemistry, University of Helsinki, Finland
Piia Juhola
Affiliation:
piia.juhola@posiva.fi, Posiva Oy, Eurajoki, Finland
Get access

Abstract

In Olkiluoto Finland colloidal silica called silica sol (EKA Chemicals) will be used as a non-cementitious grout for the sealing of fractures of the hydraulic apertures of 0.05 mm or less. The use of colloidal material has to be considered in the long-term safety assessment of a spent nuclear fuel repository. The potential relevance of colloid-mediated radionuclide transport is highly dependent on their stability in different geochemical environments. Objective of this work was to study the effect of ionic strength on stability of silica colloids released from silica gel. Silica gel samples were stored in contact with NaCl and CaCl2 electrolyte solutions and in deionized water. Colloid release and stability were followed for two years by taking the samples after one month and then twice in a year. The release and stability of colloids were followed by measuring particle size, colloidal silica concentrations and zeta potential. The particle size distributions were determined applying the dynamic light scattering (DLS) method and zeta potential based on dynamic electrophoretic mobility.

In dilute NaCl (10-7–10-2 M) and CaCl2 (3 10-7– 3 10-3 M) solutions, a mean colloid diameter was less than 100 nm and high negative zeta potential values suggests the existence of stable silica colloids. After two years, the mean particle diameter was increased but it was still less than 500 nm and absolute value of zeta potential was decreased. In 0.1–1 M NaCl and 0.03–3 M CaCl2 solutions, wide particle size distribution and zeta potential values around zero suggested particle aggregation and instable colloids. In deionized water, particle size remained rather stable and zeta potential remained high negative suggests stable silica colloids. The threshold value of ionic strength was 0.03–0.1 M when salinity had an effect on the stability of colloids. In Olkiluoto, the ionic strength of saline groundwater is order of magnitude higher than the range of effect value obtained in this study. Under the prevailing conditions in Olkiluoto, silica colloids are instable, but the possible influence of glacial melt waters has to be considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 EKA Chemicals, Eka gel MEYCO MP320 http://www.colloidalsilica.com/eka.asp asp.Google Scholar
2 Boden, A. and Sievänen, U., SKB R–05–40/Posiva WR 2005–24 (2005).Google Scholar
3 Torstenfelt, B., Jansson, M. and Atienza, M., SKB Arbetsrapport TU–05–04 (2005).Google Scholar
4 Kersting, A. B., Efurd, D. W., Finnegan, D. L., Rokop, D. J., Smith, D. K. and Thompson, J. L., Nature 397, 56 (1999).CrossRefGoogle Scholar
5 Novikov, A. P., Kalmykov, S. N., Utsunomiya, S., Ewing, R. C., Horreard, F., Merkulov, A., Clark, S. B., Tkachev, V. V. and Myasoedov, B. F., Science 314, 638 (2006).CrossRefGoogle Scholar
6 Puls, R. W. and Powell, R. M., Environ. Sci. Technol. 26, 614 (1992).CrossRefGoogle Scholar
7 Vilks, P. and Baik, M., J. Contam. Hydrol. 47, 197 (2001).CrossRefGoogle Scholar
8 Yamaguchi, T., Nakayama, S., Vandergraaf, T. T., Drew, D. J. and Vilks, P., J. Power and Energy Systems 2, 186 (2008).CrossRefGoogle Scholar
9 Vuorinen, U. and Hirvonen, H., Posiva WR–2005–03 (2005).Google Scholar
10 Takala, M. and Manninen, P., Posiva WR–2006–98 (2006).Google Scholar
11 Hölttä, P., Hakanen, M., Lahtinen, M., Leskinen, A., Lehto, J. and Juhola, P., in Scientific Basis for Nuclear Waste Management XXXII, edited by Rebak, R.B., Hyatt, N.C. and Pickett, D.A. (Mater. Res. Soc. Symp. Proc. Volume 1124, Warrendale, PA, 2009) 525530.Google Scholar
12 Hölttä, P., Lahtinen, M., Hakanen, M., Lehto, J. and Juhola, P., in Scientific Basis for Nuclear Waste Management XXXIII, edited by Burakov, B.E. and Alloy, A. S. (Mater. Res. Soc. Symp. Proc. Volume 1193, Warrendale, PA, 2009) 437–434.Google Scholar
13 Iler, R. K., The Chemistry of Silica, John Wiley & Sons, New York (1979).Google Scholar
14 Malvern Instruments Ltd., http://www.malvern.co.uk/LabEng/industry/colloids/colloids_home.htm htm.Google Scholar
15 Filella, M., Zhang, J., Newman, M. E. and Buffle, J., Colloids Surf. A 120, 27 (1997).Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of Ionic Strength on the Stability of Colloids Released from Injection Grout Silica Sol
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Effect of Ionic Strength on the Stability of Colloids Released from Injection Grout Silica Sol
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Effect of Ionic Strength on the Stability of Colloids Released from Injection Grout Silica Sol
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *