Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-09T09:31:10.834Z Has data issue: false hasContentIssue false

Effect of Ion Doping Temperature on Electrical Properties of APCVD A-Si

Published online by Cambridge University Press:  16 February 2011

Kyung Ha Lee
Affiliation:
Dept. of Physics, Kyung Hee University, Dongdaemoon-ku, Seoul 130–701, Korea
Byeong Yeon Moon
Affiliation:
Dept. of Physics, Kyung Hee University, Dongdaemoon-ku, Seoul 130–701, Korea
Yoo Chan Chung
Affiliation:
Dept. of Physics, Kyung Hee University, Dongdaemoon-ku, Seoul 130–701, Korea
Seung Min Lee
Affiliation:
Dept. of Physics, Kyung Hee University, Dongdaemoon-ku, Seoul 130–701, Korea
Sung Chul Kim
Affiliation:
Dept. of Physics, Kyung Hee University, Dongdaemoon-ku, Seoul 130–701, Korea
Donggil Kim
Affiliation:
Anyang Research Lab., GoldStar, Anyang-shi, Kyungki-do, Korea
Jin Jang
Affiliation:
Dept. of Physics, Kyung Hee University, Dongdaemoon-ku, Seoul 130–701, Korea
Get access

Abstract

We have studied the effect of ion doping on the electrical properties for atmospheric pressure chemical vapor deposition (APCVD) Amorphous silicon (a-Si) films. The room temperature conductivities after ion doping at optimum doping temperatures for n- and p-type a-Si films were found to be > 10−2 and > 10−4 S/cm, respectively. The unintentional hydrogen incorporation into a-Si during ion doping enhances the quality of ion doped APCVD a-Si as compared to that of plasma enhanced CVD (PECVD) a-S.i.H. We obtained the field effect mobility of > 1 cm2/Vs for APCVD a-Si TFT using ion doped n+-layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Oana, Y., J. Non-Cryst. Solids 115, 27 (1989).CrossRefGoogle Scholar
2. Stroomer, M.V.C., Powell, M.J., Easron, B.C. and Chapman, J.A., Electron. Lett. 118, 858 (1982).CrossRefGoogle Scholar
3. Matsumura, M. and Sugiura, O., Proc. Inter. Conf. Solid State Devices and Materials (Tsukuba, Japan, 1992), p. 46.Google Scholar
4. Breddels, P.A., Kanoh, H., Sugiura, O. and Matsumura, M., Jpn. J. Appl. Phys. 30, 233 (1991).CrossRefGoogle Scholar
5. Ahn, B.C., Kim, J.H., Kim, D., Moon, B.Y., Kim, K.N., Lee, C.W. and Jang, J., Mat. Res. Soc. Symp. Proc. 297, 901 (1993).CrossRefGoogle Scholar
6. Yoshida, A., Kitagawa, M., Setsune, K. and Hirao, T., Jpn. J. Appl. Phys. 27, L1355 (1988).CrossRefGoogle Scholar
7. Fritzsche, H., Solar Energy Mater. 3, 447 (1980).CrossRefGoogle Scholar
8. Yoshida, A., Nukayama, M., Andoh, Y., Kitagawa, M. and Hirao, T., Jpn. J. Appl. Phys. 30, L67 (1991).CrossRefGoogle Scholar
9. Carlson, D.H., Smith, R.W., Magee, C.W. and Zanzucchi, P.Z., Phil. Mag. B 45, 51 (1982).CrossRefGoogle Scholar