Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-dwt4q Total loading time: 0.261 Render date: 2021-06-15T23:59:55.615Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Effect of Heat Treatment on the Ductility of Ni(γ)/Ni3Al(γ') Two-phase Alloy Foils

Published online by Cambridge University Press:  26 February 2011

Motonori Nakamura
Affiliation:
Nakamura.motonori@nims.go.jp, University of Tsukuba, Graduate School of Pure and Applied Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 3050047, Japan
Masahiko Demura
Affiliation:
DEMURA.Masahiko@nims.go.jp, National Institute for Materials Science, Fuel Cell Materials Center, 1-2-1 Sengen, Tsukuba, Ibaraki, 3050047, Japan
Ya Xu
Affiliation:
XU.Ya@nims.go.jp, National Institute for Materials Science, Fuel Cell Materials Center, 1-2-1 Sengen, Tsukuba, Ibaraki, 3050047, Japan
Toshiyuki Hirano
Affiliation:
HIRANO.Toshiyuki@nims.go.jp, National Institute for Materials Science, Fuel Cell Materials Center, 1-2-1 Sengen, Tsukuba, Ibaraki, 3050047, Japan
Get access

Abstract

The microstructures and room-temperature tensile properties were examined in the 95% cold-rolled and subsequently heat-treated foils of the boron-free Ni(γ)/Ni3Al(γ') two-phase (Ni-18at.%Al) alloys. The electron backscatter diffraction measurements revealed that the recrystallization started at 873 K/0.5 h and that it completed at 1273 K/0.5 h. While the foils showed no tensile elongation in the cold-rolled state, they became ductile after the heat-treatments at 873 K and above. The tensile elongation increased with the increasing heat-treatment temperature: it reached to 14% at 1273 K/0.5 h. The tensile elongation and the fracture strength were high, compared to those in the γ' single-phase foils. The fracture mode was intergranular, and it changed to a mix of intergranular and transgranular in the foils heat-treated at 1273 K/0.5 h, where the area fraction of crack resistant boundaries such as °1, °3 and °9 was high, 0.63. The high ductility was ascribed to the existence of the ductile γ matrix and to the high fraction of crack-resistant boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Demura, M, Suga, Y, Umezawa, O, George, EP, Hirano, T. Intermetallics 2001;9:157.CrossRefGoogle Scholar
2. Demura, M, Kisida, K, Suga, Y, Hirano, T. Metall Mater Trans A 2002;33A:2607.CrossRefGoogle Scholar
3. Demura, M, Kisida, K, Suga, Y, Takanashi, M, Hirano, T. Scripta Mater 2002;47: 267.CrossRefGoogle Scholar
4. Borodians' Ka, H, Demura, M, Kisida, K, Hirano, T. Intermetallics 2002;10:255.CrossRefGoogle Scholar
5. Li, D, Demura, M, Kisida, K, Suga, Y, Hirano, T. Mat. Rec. Symp. Proc 2003;753: BB5.23.1.Google Scholar
6. Beardmore, P, Davies, RG, Johnston, TL, Transactions of the Metallurgical Society of AIME 1969;245:1537.Google Scholar
7. Harada, H, Yamazaki, M, Koizumi, Y, Testsu-to-Hagane 1979;65:1049.CrossRefGoogle Scholar
8. Aoki, K, Izumi, O. Trans Jim 1978;19:203.CrossRefGoogle Scholar
9. Cui, C, Demura, M, Kisida, K, Hirano, T. J Mater Research 2005;20:1054 CrossRefGoogle Scholar
10. Su, JQ, Demura, M, Hirano, T. Philos. Mag. 2002;82:1541 Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of Heat Treatment on the Ductility of Ni(γ)/Ni3Al(γ') Two-phase Alloy Foils
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effect of Heat Treatment on the Ductility of Ni(γ)/Ni3Al(γ') Two-phase Alloy Foils
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effect of Heat Treatment on the Ductility of Ni(γ)/Ni3Al(γ') Two-phase Alloy Foils
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *