Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-t82dr Total loading time: 0.236 Render date: 2021-12-02T20:07:10.522Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Effect Co- and Sc- Doping on the Functional Properties of Nanocrystalline Powders and Thin Films of ZnO

Published online by Cambridge University Press:  01 February 2011

Marco A Galvez
Affiliation:
marco.galvez@upr.edu, University of Puerto Rico Mayaguez, Physics, Mayaguez, Puerto Rico
Oscar Perales-Perez
Affiliation:
operalesperez@yahoo.com, University of Puerto Rico, Department of Engineering Science and Materials, sTEFANI bUILDING 601, Mayaguez, Mayaguez, 00680, Puerto Rico
Surinder P Singh
Affiliation:
surinder.singh@upr.edu, University of Puerto Rico Mayaguez, Engineering science and Materials, Mayaguez, Mayaguez, 00681, Puerto Rico
Get access

Abstract

A modified sol-gel approach to synthesize well-crystallized pure and doped ZnO nanocrystalline powders and thin films has been developed. The attachment of ZnO films onto quartz substrates was optimized by selecting suitable organic agents to control the viscosity of precursor solutions. Thermo-gravimetric analyses on pure and doped precursor solids suggested the need for annealing temperatures above 400 °C to assure the effective crystallization of the oxide phase. The average crystallite size in powders and thin films varied from 25.9 nm to 33.7 nm when pure ZnO films were annealed for 1 hour in the 450 °C - 600 °C range. The average crystallite size ranged between 30 nm and 33 nm in the presence of cobalt (5 at%) and decreased from 33.7 nm to 21.1 nm when scandium ions was used in the 0.0 at% - 10 at% range under similar annealing conditions. UV-vis measurements showed a sharp exciton peak centered at 370 nm whereas photoluminescence analyses detected the characteristic ZnO emission band in the UV region. No photoluminescence band in the visible region, usually attributed to defect states in ZnO, was observed in our measurements. Magnetization measurements revealed a weak ferromagnetism in Co-doped ZnO whereas a clear diamagnetism was evident in the Sc-doped sample.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Sato, K. Katayama-Yoshida, H., J. Appl Phys B 308–310 (2001), 904907.Google Scholar
[2] Pan, F. Song, C. et al. , Materials Science and Engineering R 62 (2008), 135.Google Scholar
[3] Qi, Jing, Gao, Daqiang et al. Appl Phys A 100 (2010) 7982.CrossRefGoogle Scholar
[4] Wolf, S. A. Awschalom, D. D. et al. Science, 294, (2001) 1488.CrossRefGoogle Scholar
[5] Yoon, K.H. Choi, J.W. Lee, D.H. Thin Solid Films 302 (1997) 116.CrossRefGoogle Scholar
[6] Ogawa, M.F. Natsume, Y. et al. J. Mater. Sci. Lett 9, (1990), 13511353.CrossRefGoogle Scholar
[7] Hu Roy, J. Gordon, G. J. Appl. Phys. 71, (1992), 880.Google Scholar
[8] Kim, H. Horwitz, J.S. Qadri, S.B. Chrisey, D.B. Thin Solid Films 420–421 (2002) 107.CrossRefGoogle Scholar
[9] Lee, J.H. Ko, K.H. Park, J.L. J. Cryst. Growth 247 (2003) 119.CrossRefGoogle Scholar
[10] Song, D. Windenborg, P. Chin, W. Aberle, A. Sol. Energy Mater. Sol. Cells 73 (2002) 269.CrossRefGoogle Scholar
[11]. Burstein, E. Phys. Rev. 25 (1982) 7826.Google Scholar
[12]. Lu, J.J. Lu, Y.M. Tasi, S.I. et al. Optical Materials 29 (2007) 15481552 CrossRefGoogle Scholar
[13]Bylander, E.G. J. Appl. Phys. 49 (1978) 1188.CrossRefGoogle Scholar
[14] Liu, M. Kitai, A.H. Mascher, P. J. Lumin. 54 (1992) 35.CrossRefGoogle Scholar
[15] Sharma, Ruchika, Applied Surface Science 255 (2009) 57815788.CrossRefGoogle Scholar
[16] Kuo, Shou-Yi, Lai, Fang-I et al. Japanese J. Appl. Phys 45, No. 4B, (2006) 36623665.CrossRefGoogle Scholar
[17]. Shionoya, S. and Yen, W.M. Phosphor Handbook, CRC Press, Boca Raton, Florida 1999.Google Scholar
[18]. Venkatesan, M. Fitzgerald, C. B. et al. Phys. Rev. Lett 93 (2004), 177206.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect Co- and Sc- Doping on the Functional Properties of Nanocrystalline Powders and Thin Films of ZnO
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effect Co- and Sc- Doping on the Functional Properties of Nanocrystalline Powders and Thin Films of ZnO
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effect Co- and Sc- Doping on the Functional Properties of Nanocrystalline Powders and Thin Films of ZnO
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *