Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-17T11:21:29.232Z Has data issue: false hasContentIssue false

Dynamics of Wet Oxidation of High-Al-Content III-V Materials

Published online by Cambridge University Press:  10 February 2011

Carol I. H. Ashby*
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-0603
Get access

Abstract

Oxidation of layers of high-Al-content III-V materials by water vapor has become the enabling process for high-efficiency vertical cavity surface emitting lasers (VCSELs) and has potential applications for reducing substrate current leakage in GaAs-on-insulator (GOI) MESFETs. Because of the established importance of wet oxidation in optoelectronic devices and its potential applications in electronic devices, it has become increasingly important to understand the mechanism of wet oxidation and how it might be expected to affect both the fabrication and subsequent operation of devices that have been made using this technique. The mechanism of wet oxidation and the consequence of this mechanism for heterostructure design and ultimate device operation are discussed here.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dallesasse, J. M., Holonyak, N. Jr. Sugg, A. R., Richard, T. A., and EI-Zein, N., Appl. Phys. Lett. 57,2844 (1990).Google Scholar
2. Choquette, K. D., Schneider, R.P. Jr., Lear, K. L., and Geib, K. M., Electroni. Lett. 30, 2043 (1994).Google Scholar
3. Lear, K. L., Choquette, J. D., Schneider, R. P. Jr., Kilcoyne, S. P., and Geib, K. M., Electron. Lett. 31, 208 (1995).Google Scholar
4. Parikh, P. A., Chavarkar, P. M., and Mishra, U. K., IEEE Electron. Device Lett. 18, 111 (1997).Google Scholar
5. Chen, E. I., Holonyak, N. Jr., and Maranowski, S. A, Appl. Phys. Lett. 66, 2688, (1995).Google Scholar
6. Choquette, K. D., Geib, K. M., Ashby, C. I. H., Twesten, R. D., Blum, O., Hou, H. Q., Follstaedt, D. M., Hammons, B. E., Mathes, D., and Hull, R., IEEE J. Select. Topics in Quant. Electron. 3, 916 (1997).Google Scholar
7. Ashby, C. I. H., Sullivan, J. P., Newcomer, P. P., Missert, N. A., Hou, H. Q.. Hammons, B. E., Hafich, M. J., and Baca, A. G., Appl. Phys. Lett. 70, 2443 (1997).Google Scholar
8. Deal, B. E. and Grove, A. S., J. Appl. Phys. 36, 3770 (1965).Google Scholar
9. Langenfelder, T., Schröder, St., and Grothe, H., J. Appl.Phys. 82, 3548 (1997).Google Scholar
10. Ochiai, M., Giudice, G. E., Temkin, H., Scott, J. W., and Cockerill, T. M., Appl. Phys. Lett. 68, 1898 (1996).Google Scholar
11. Feld, S. A., Loehr, J. P., Sherriff, R. E., Miemeri, J., and Kaspi, R., IEEE Photon. Technol. Lett. 10, 197 (1998).Google Scholar
12. Schwartz, G.P., Schwartz, B., DiStefano, D., Gualtieri, G. J., and Griffiths, J. E., Appl. Phys. Lett. 34, 205 (1979).Google Scholar
13. Schwartz, G. P., Gualtieri, G. J., Griffiths, J. E., Thurmond, C. D., Schwartz, B., J. Electrochem. Soc. 127, 2488 (1980).Google Scholar
14. Ashby, C. I. H., Sullivan, J. P., Choquette, K. D., Geib, K.M., and Hou, H. Q., J. Appl. Phys. 82, 3134 (1997).Google Scholar
15. Mitchell, W. J., Chung, C.-H., Yi, S.I., Hu, E.L., and Weinberg, W.H., J. Vac. Sci. Technol. B 15, 1182 (1997).Google Scholar
16. Thermochemical data used in calculations foundin Kubaschewski, O., Alcock, C. B., Spencer, P. J., ″Materials Thermochemistry″, Pergamon Press, UK, 1993.Google Scholar
17. Twesten, R. D., Follstaedt, D. M., and Choquette, K. D., ″Vercital-Cavity Surface Emitting Lasers, Choquette, K. D. and Deppe, D. G., eds., Proc. SPIE-The International Society for Optical Engineering Proceedings 3003, 55 (1997).Google Scholar
18. Kim, J.-H., Lim, D. H., Kim, K. S., Yang, G M., Lim, K. Y, and Lee, H. J., Appl. Phys. Lett. 69, 3357 (1996).Google Scholar
19. Naone, R. L. and Coldren, L. A., J. Appl. Phys. 82, 2277 (1997).Google Scholar
20. Blum, O., Ashby, C. I. H., and Hou, H. Q., Appl. Phys. Lett. 70, 2870 (1997).Google Scholar
21. Blum, O., Lear, K. L., Hou, H. Q., and Warren, M. E., Electron. Lett. 32, 1406 (1996).Google Scholar
22. Naone, R. L., Hegbloom, E. R., Thibeault, B. J., and Coldren, L. A., Electron. Lett. 33, 300 (1997).Google Scholar
23. Tan, T. Y., Mater. Sci. and Engin. B10, 227 (1991).Google Scholar
24. Liliental-Weber, Z., Ruvimov, S., Swider, W., Washburn, J., Li, M., Li, G. S., and Chang-Hasnain, C., and Weber, E. R. et al., SPIE–The International Society for Optical Engineering Proceedings 3006, 15 (1997).Google Scholar
25. Parikh, P.A., Chavarkar, P.M., Zhao, L., Ibbetson, J., Speck, J.S., Mishra, U. K., ″Effect of oxidation of AlxGal-xAs on Adjacent Semiconductor Layers: Hall (Electrical) and TEM (Structural Characterization)″, 1997 EMC Proceedings, pp 40.Google Scholar
26. Shi, S. S., Ph.D. thesis, ′Hydrogen Passivation of Native Oxides in GaAs-based III-V Devices′, September 1997.Google Scholar
27. Shi, S. S., Hu, E. L., Zhang, J.-P., Chang, Y.-I., Parikh, P., and Mishra, U. K., Appl. Phys. Lett. 70, 1293 (1997).Google Scholar
28. Lin, C.-K., Zhang, X., Dapkus, P. D., and Rich, D. H., Appl. Phys. Lett. 71, 3108 (1997).Google Scholar