Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-x46dj Total loading time: 0.148 Render date: 2021-07-25T07:56:33.444Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

DNA Bonding to CVD Diamond Probed by Scanning Electron-, Fluorescence-, and Atomic force- Microscopy

Published online by Cambridge University Press:  01 February 2011

Christoph E. Nebel
Affiliation:
christoph.nebel@aist.go.jp, Diamond Research Center, AIST, Central 2, 1-1-1, Tsukuba, 305-8568, Japan, 0298614836, 0298612773
Hiroshi Uetsuka
Affiliation:
hiroshi.uetsuka@aist.go.jp, Diamond Research Center, AIST, Central 2, 1-1-1, Tsukuba, 305-8568, Japan
Buhuslav Rezek
Affiliation:
rezek@fzu.cz, Institute of Physics, Cukrovarnicka 10,, Praha, 162 53, Czech Republic
Dongchan Shin
Affiliation:
dongchan.shin@aist.go.jp, Diamond Research Center, AIST, Central 2, 1-1-1, Tsukuba, 305-8568, Japan
Norio Tokuda
Affiliation:
n-tokuda@aist.go.jp, Nanotechnology Research Institute, AIST, Central 2-13, 1-1-1, Tsukuba, 305-8568, Japan
Takako Nakamura
Affiliation:
takako-nakamura@aist.go.jp, Center for Advanced Carbon Material, AIST, Central 2, Tsukuba, 305-8568, Japan
Get access

Abstract

Double stranded desoxyribonucleic acid (ds-DNA) layers, bonded to hydrogen terminated polycrystalline diamond, are characterized by scanning electron (SEM), fluorescence (FM), and atomic force microscopy (AFM). DNA grafting has been achieved using photochemical bonding of ω-unsaturated 10-amino-dec-1-ene molecules. SEM detects local variations of electron affinities on polycrystalline diamond, revealing distinct grain structures. FM applied on fluorescence labeled ds-DNA show laterally varying intensities of typically 20 %, which resembles also grain structure as detected by SEM. Contact and tapping mode AFM characterization reveal a tilted DNA bonding to diamond, dense layer formation which gives rise to smoothening of surface properties. The lateral density variation of DNA is attributed to local variations of the photo-electron emission efficiency which affects the photochemical attachment chemistry of amine linker molecules to diamond.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Fodor, S.P.A.; Rava, R.P.; Huang, X.C.; Pease, A.C.; Holmes, C. P.; Adams, C.L. Nature 1993, 364, 555.CrossRefGoogle Scholar
2. Saiki, R.K.; Walsh, P.S.; Levenson, C.H.; Erlich, H.A. Proc. Natl. Acad. Sc USA. 1989, 86, 6230.10.1073/pnas.86.16.6230CrossRefGoogle Scholar
3. Liu, Q.; Wang, L.; Frutos, A.G.; Condon, A.E.; Corn, R.M.; Smith, L.M. Nature 2000, 403, 175.10.1038/35003155CrossRefGoogle Scholar
4. Vo-Dinh, T.; Cullum, B.; Fresenius, J. Anal. Chem. 2000, 366, 540.Google Scholar
5. Millan, K.M.; Spurmanis, A.J.; Mikkelsen, S.R. Electroanalysis 1992, 4, 929.10.1002/elan.1140041003CrossRefGoogle Scholar
6. Hashimoto, K.; Ito, K.; Ishimori, Y. Anal. Chem. 1994, 66, 3830.CrossRefGoogle Scholar
7. Yang, M.; Kong, R.Y.C.; Kazmi, M.; Leung, K.C. Chem. Lett. 1998, 3, 257.CrossRefGoogle Scholar
8. Buriak, J.M. Chem. Rev. 2002, 102, 1271.CrossRefGoogle Scholar
9. Bousse, L.; de, Rooji, N.F.; Bergeveld, P. IEEE Trans. Electron Dev. 1983, 30, 1263.10.1109/T-ED.1983.21284CrossRefGoogle Scholar
10. Strothers, T.; Hamers, R.J.; Smith, L.M. Nucleic Acids Res. 2000, 28, 3535.CrossRefGoogle Scholar
11. Yang, W.; Auciello, O.; Butler, J.E.; Cai, W.; Carlisle, J.A.; Gerbi, J.E.; Gruen, D.M.; Knickerbocker, T.; Lasseter, T.L.; Russell, Jr, J.N.; Smith, L.M.; Hamers, R.J. Nature Materials 2002, 1, 253.CrossRefGoogle Scholar
12. Takahashi, K.; Tanga, M.; Takai, O.; Okamura, H., Sakai, Y. Bio. Ind. 2000, 17, 44.Google Scholar
13. Song, K.-S.; Degawa, M.; Nakamura, Y.; Kanazawa, H.; Umezawa, H.; Kawarada, H. Jap. J. Applied Phys. 2004, 43, L814.10.1143/JJAP.43.L814CrossRefGoogle Scholar
14. Härtl, A., Schmich, E.; Garrido, J.A.; Hernando, J.; Catharino, S.C.R.; Walter, S.; Feulner, P.; Kromka, A.; Steinmüller, D.; Stutzmann, M. Nature Mat. 2004, 3, 736.CrossRefGoogle Scholar
15. Han, S.W.; Nakamura, C.; Obataya, I.; Nakamura, N.; Miyake, J. Bioch. Biophysical Research Com. 2005, 332, 633.10.1016/j.bbrc.2005.04.059CrossRefGoogle Scholar
16. Wang, J.; Firestone, A.; Auciello, O.; Carlisle, J.A. Langmuir 2004, 20, 11450.CrossRefGoogle Scholar
17. Nichols, B.; Butler, J.E.; Russell, Jr., J.N.; Hamers, R.J. J. Phys. Chem. B 2005, 109, 20938.CrossRefGoogle Scholar
18. Nebel, C.E.; Shin, D.; Takeuchi, D.; Yamamoto, T.; Watanabe, H.; Nakamura, T. Langmuir 2006, 22 (13) 5645.10.1021/la052685sCrossRefGoogle Scholar
19. Nichols, B.M.; Metz, K.M.; Tse, K.-Y.; Butler, J.E.; Russell, Jr.; J.N.; Hamers, R.J. J. Phys Chem. B 2006, 110 (33), 16535.CrossRefGoogle Scholar
20. Cui, J.B.; Ristein, J.; Ley, L. Phys. Rev. Lett. 1998, 81, 429.CrossRefGoogle Scholar
21. Rezek, B.; Shin, D.; Nakamura, T. Nebel, C.E. J. Am. Chem. Soc. 2006, 128 (12); 3884.CrossRefGoogle Scholar
22. Rezek, B.; Nebel, C.E. Diam. Rel. Mat. 2006, 15, 1374.CrossRefGoogle Scholar
23. Takeuchi, D.; Nebel, C.E.; Yamasaki, S. J. Appl. Phys. 2006, 99 (8), 086102.10.1063/1.2188070CrossRefGoogle Scholar
24. Nebel, C.E.; Rezek, B.; Shin, D.; Watanabe, H. phys. stat. sol. (a) 2006, 203, 13, 3273.CrossRefGoogle Scholar
25. Ristein, J.; Riedel, M.; Ley, L. J. Electrochem. Soc. 2004, 151 (10), E315.10.1149/1.1785797CrossRefGoogle Scholar
26. Shin, D.; Rezek, B.; Tokuda, N.; Takeuchi, D.; Watanabe, H.; Nakamura, T.; Yamamoto, T.; Nebel, C.E. phys. stat. sol. (a) 2006, 203 (13), 3245.CrossRefGoogle Scholar
27. Takahashi, K.; Tanga, M.; Takai, O.; Okamura, H. Diam. Rel. Mat. 2003, 12, 572.CrossRefGoogle Scholar
28. Jiang, X.; in: Thin Film Diamond I, Semiconductors and Semimetals Vol.76, Editors: Nebel, C.E., Ristein, J., Elsevier 2003, p. 1.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

DNA Bonding to CVD Diamond Probed by Scanning Electron-, Fluorescence-, and Atomic force- Microscopy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

DNA Bonding to CVD Diamond Probed by Scanning Electron-, Fluorescence-, and Atomic force- Microscopy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

DNA Bonding to CVD Diamond Probed by Scanning Electron-, Fluorescence-, and Atomic force- Microscopy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *