Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-md8df Total loading time: 0.224 Render date: 2021-12-08T05:54:42.500Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Direct Fabrication of All-Inorganic Logic Elements and Microelectromechanical Systems from Nanoparticle Precursors

Published online by Cambridge University Press:  17 March 2011

Colin Bulthaup
Affiliation:
Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139
Eric Wilhelm
Affiliation:
Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139
Brian Hubert
Affiliation:
Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139
Brent Ridley
Affiliation:
Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139
Joe Jacobson
Affiliation:
Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

Here we describe the fabrication of electrostatic motors by liquid embossing, a contact stamp-based method of patterning liquids with sub-micron resolution. We also demonstrate AFM nano-assembly which can produce sub-40 nm dots and lines by transferring either liquid or solid material from a reservoir to a deposition area. Both of these non-lithographic patterning techniques are applicable to nanocrystal, organic, and polymeric solutions and liquids.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jacobson, J. M. et al. , Mater. Res. Soc. Proc. 581, pp 115120 (1999).Google Scholar
2. Bulthaup, C. et al. , Mat. Res. Soc. Symp. Proc. 625, 135 (2000).CrossRefGoogle Scholar
3. Ridley, B.A., Nivi, B., Jacobson, J.M., Science 286, 746749 (1999).CrossRefGoogle Scholar
4. Kumar, A., Biebuyck, H. A., and Whitesides, G. M., Langmuir 10, 1498 (1994).CrossRefGoogle Scholar
5. Xia, Y., Zhao, X-M., Kim, E., and Whitesides, G. M., Chem. Mater. 7, 2332 (1995).CrossRefGoogle Scholar
6. Xia, Y., Kim, E., and Whitesides, G. M., J. Electrochem. Soc. 143, 1070 (1996).CrossRefGoogle Scholar
7. Xia, Y., Kim, E., Mrksich, M., and Whitesides, G. M., Chem. Mater. 8, 601 (1996).CrossRefGoogle Scholar
8. Goetting, L. B., Deng, T., and Whitesides, G. M., Langmuir 15, 1182 (1999).CrossRefGoogle Scholar
9. Whidden, T. K. et al. , Nanotechnology 7, 447 (1996).CrossRefGoogle Scholar
10. Wang, D., Thomas, S. G., Wang, K. L., Xia, Y., and Whitesides, G. M., Appl. Phys. Lett. 70, 1593 (1997).CrossRefGoogle Scholar
11. John, P. M. St., and Craighead, H. G., Appl. Phys. Lett. 68, 1022 (1996).CrossRefGoogle Scholar
12. Hu, J. et al. , Appl. Phys. Lett. 71, 2020 (1997).CrossRefGoogle Scholar
13. Hu, J., Beck, R. G., Westervelt, R. M., and Whitesides, G. M., Adv. Mater. 10, 574 (1998).3.0.CO;2-D>CrossRefGoogle Scholar
14. Jeon, N. L., Hu, J., Whitesides, G. M., Erhardt, M. K., and Nuzzo, R. G., Adv. Mater. 10, 1466 (1998).3.0.CO;2-5>CrossRefGoogle Scholar
15. Chou, S., Krauss, P., Renstrom, P., Science 272, 85 (1996).CrossRefGoogle Scholar
16. Guo, L., Krauss, P. R., and Chou, S. Y., Appl. Phys. Lett. 71, 1881 (1997).CrossRefGoogle Scholar
17. Yu, Z., Schablitsky, S. J., and Chou, S. Y., Appl. Phys. Lett. 74, 2381 (1999).CrossRefGoogle Scholar
18. Hidber, P. C., Helbig, W., Kim, E., and Whitesides, G. M., Langmuir 12, 1375 (1996).CrossRefGoogle Scholar
19. Wang, J., Sun, X., Chen, L., and Chou, S. Y., Appl. Phys. Lett. 75, 2767 (1999).CrossRefGoogle Scholar
20. Rogers, J. A., Bao, Z., and Dhar, L., Appl. Phys. Lett. 73, 294 (1998).CrossRefGoogle Scholar
21. Kim, E., Xia, Y., and Whitesides, G. M., Nature 376, 581 (1995).CrossRefGoogle Scholar
22. Rogers, J. A., Bao, Z., and Raju, V. R., Appl. Phys. Lett. 72, 2716 (1998).CrossRefGoogle Scholar
23. Marzolin, C., Smith, S. P., Prentiss, M., and Whitesides, G. M., Adv. Mater. 10, 571 (1998).3.0.CO;2-P>CrossRefGoogle Scholar
24. Schuler, O., Whitesides, G. M., Rogers, J. A., Meier, M., and Dodabalapur, A., Appl. Optics 38, 5799 (1999).CrossRefGoogle Scholar
25. Jeon, N. L., Choi, I. S., Xu, B., and Whitesides, G. M., Adv. Mater. 11, 946 (1999).3.0.CO;2-9>CrossRefGoogle Scholar
26. Beh, W. S., Kim, I. T., Qin, D., Xia, Y., and Whitesides, G. M., Adv. Mater. 11, 1038 (1999).3.0.CO;2-L>CrossRefGoogle Scholar
27. Fuller, S.B., Jacobson, J.M., Proc. of IEEE MEMS 2000 Conf., Miyazaki, Japan (2000)Google Scholar
28. Manoharan, H.C., Lutz, C.P. and Eigler, D.M., Nature, 403, 6769, 512515 (2000).CrossRefGoogle Scholar
29. Resch, R., Montoya, N., Koel, B.E., Madhukar, A., Requicha, A.A.G., Will, P., Molecular Imaging Application Note, (1999).Google Scholar
30. Falvo, M.R., Taylor, R.M. II, Helser, A., Chi, V., Brooks, F.P. Jr., Washburn, S., Superfine, R., Nature, 397, 6716, 236238 (1999).CrossRefGoogle Scholar
31. Hong, S., Zhu, J., Mirkin, C.A., Science, 286, 523525 (1999).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Direct Fabrication of All-Inorganic Logic Elements and Microelectromechanical Systems from Nanoparticle Precursors
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Direct Fabrication of All-Inorganic Logic Elements and Microelectromechanical Systems from Nanoparticle Precursors
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Direct Fabrication of All-Inorganic Logic Elements and Microelectromechanical Systems from Nanoparticle Precursors
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *