Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T22:27:30.051Z Has data issue: false hasContentIssue false

Diffusion Modeling in Compacted Bentonite Based on Modified Gouy-Chapman Model

Published online by Cambridge University Press:  03 July 2014

Kenji Yotsuji
Japan Atomic Energy Agency, 4-33, Muramatsu, Tokai, Ibaraki, 319-1194, Japan
Yukio Tachi
Japan Atomic Energy Agency, 4-33, Muramatsu, Tokai, Ibaraki, 319-1194, Japan
Yuichirou Nishimaki
Visible Information Center, Inc., 440, Muramatsu, Tokai, Ibaraki, 319-1112, Japan
Get access


The integrated sorption and diffusion (ISD) model has been developed to quantify radionuclide transport in compacted bentonite. The current ISD model, based on averaged pore aperture and the Gouy-Chapman electric double layer (EDL) theory can quantitatively account for diffusion of monovalent cations and anions under a wide range of conditions (e.g., salinity, bentonite density). To improve the applicability of the current ISD model for multivalent ions and complex species, the excluded volume effect and the dielectric saturation effect were incorporated into the current model, and the modified Poisson-Boltzmann equations were numerically solved. These modified models had little effect on the calculation of effective diffusivity of Sr2+/Cs+/I. On the other hand, the model, modified considering the effective electric charge of hydrated ions, calculated using the Gibbs free energy of hydration, agreed well with the diffusion data including those of Sr2+.

Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Ochs, M., Lothenbach, B., Wanner, H., Sato, H., Yui, M., J. Contam. Hydrol. 47, 283296 (2001).CrossRefGoogle Scholar
Tachi, Y., Nakazawa, T., Ochs, M., Yotsuji, K., Suyama, T., Seida, Y., Yamada, N., Yui, M., Radiochim. Acta 98, 711718 (2010).10.1524/ract.2010.1772CrossRefGoogle Scholar
Tachi, Y. and Yotsuji, K., in abstract book of the 5th meeting on international meeting “Clays in Natural and Engineered Barriers for Radioactive Waste Confinement” (2012).Google Scholar
Tachi, Y. and Yotsuji, K., Geochim. Cosmochim. Acta, accepted (2013).Google Scholar
Lyklema, J. and Overbeek, J. Th. G., J. Colloid Sci. 16, 501 (1961).10.1016/0095-8522(61)90029-0CrossRefGoogle Scholar
Verwey, E.J.W. and Overbeek, J.Th.G., Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam (1948).Google Scholar
Carter, D.L., Heilman, M.D. and Gonzalez, C.L., Soil Sci. 100, 356 (1965).10.1097/00010694-196511000-00011CrossRefGoogle Scholar
Gur, Y., Ravina, I. and Babchin, A. J., J. Colloid Interface Sci. 64, 326, 333 (1978).10.1016/0021-9797(78)90368-5CrossRefGoogle Scholar
Basu, S. and Sharma, M.M., J. Colloid Interface Sci. 165, 355 (1994).10.1006/jcis.1994.1241CrossRefGoogle Scholar
Paunov, V.N., Dimova, R.I., Kralchevsky, P.A., Broze, G. and Mehreteab, A., J. Colloid Interface Sci. 182, 239 (1996).CrossRefGoogle Scholar
Lehikoinen, J., Muurinen, A. and Olin, M., Mater. Res. Soc. Proc. 506, 383 (1998).CrossRefGoogle Scholar
Gerald, C.F. and Wheatley, P.O., Applied Numerical Analysis (5th ed.), Addison-Wesley Publishing Company, Inc. (1994).Google Scholar
Nightingale, E.R. Jr., J. Phys. Chem. 63, 1381 (1959).CrossRefGoogle Scholar
Shannon, R.D., Acta Cryst. A32, 751 (1976).10.1107/S0567739476001551CrossRefGoogle Scholar
Marcus, Y., Ion Properties, Marcel Dekker, Inc., New York (1997).Google Scholar
Booth, F., J. Chem. Phys. 19, 391, 1327, 1615 (1951).CrossRefGoogle Scholar
Stokes, R.H., J. Am. Chem. Soc. 86, 979 (1964).CrossRefGoogle Scholar
Ohtaki, H., Hydration of the Ion, Kyoritsu Shuppan, Tokyo (1990) [in Japanese].Google Scholar