Hostname: page-component-5d59c44645-mrcq8 Total loading time: 0 Render date: 2024-02-26T15:47:50.827Z Has data issue: false hasContentIssue false

Dielectric Properties Analysis in Paraelectric ZrTiO4 Thin Films

Published online by Cambridge University Press:  21 March 2011

Kyunghae Kim
Affiliation:
School of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 440-746, Korea
Jinhee Heo
Affiliation:
School of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 440-746, Korea
Taeseok Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul, 151-742, Korea
Byungwoo Park
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul, 151-742, Korea
Junsin Yi
Affiliation:
School of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 440-746, Korea
Get access

Abstract

The dielectric constants and dielectric losses of ZrTiO4 thin films deposited by DC magnetron reactive sputtering were investigated. The paraelectric properties were measured in the 100kHz range and compared with an equivalent circuit model. As the deposition temperature increased (up to 600°C), the dielectric losses (tanσ) decreased (down to 0.017±0.007), while the dielectric constants (ε) were in the range of 35±7. Post annealing at 800°C in oxygen for 2h reduced tanσ down to 0.005±0.001, higher than those of well-sintered bulk ZrTiO4.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rererences

1. Cava, R. J., Pcck, W. F. Jr, Krajewski, J. J., Roberts, G. L., Barber, B. P., O'Bryan, H. M. and Gammel, P. L.: Appl. Phys. Lett. 70, 1396 (1997)Google Scholar
2. Liang, G. C., Withers, r. S., Cole, B. F. and Newman, N.: IEEE Trans. Microwave Theory & Tech. 42, 34 (1994)Google Scholar
3. Oates, D. E. and Anderson, A.C.: IEEE Trans. Magn. 28, 867 (1991)Google Scholar
4. Young, K. H., Negrete, G. V., Hannond, R. B., Inam, A., Ramesh, R., Hart, D. L. and Yonezawa, Y.: Appl. Phys. Lett. 58, 1789 (1991)Google Scholar
5. McHall, A. E. and Roth, R. S.: J. Am. Ceram. Soc. 66, C18 (1983)Google Scholar
6. Wolfram, G. and Gobel, E.: Mater. Res. Bull. 16, 1455 (1981)Google Scholar
7. Newnham, E.: J. Am. Ceram. Soc. 50, 216 (1967)Google Scholar
8. Chriofferson, R. and Davis, P. K.: J. Am ceram. Soc. 75, 563 (1992)Google Scholar
9. Wang, C. L., Lee, H. Y. and Azough, F.: J. Mater. Sci. 28, 2273 (1993)Google Scholar
10. Chang, D. A., Lin, P. and Tweung, T.-Y.: J. Appl. Phys. 77, 4445 (1995)Google Scholar
11. Chang, D. A., Lin, P. and Tweung, T.-Y.: J. Appl. Phys. 78, 7103 (1995)Google Scholar
12. Wu, F. J. and Tseung, T.-Y.: J. Am. Ceram. Soc. 81, 439 (1998)Google Scholar
13. Nakagawara, O., Toyota, Y., Kobayshi, M., Yoshino, Y. and Katayama, Y.: J. Appl. Phys. 80, 388 (1996)Google Scholar
14. Azough, F., Freer, R., Wang, C.-L. and Lorimer, G. W.: J. Mater. Sci. 31, 2539 (1996)Google Scholar
15. Liang, Y. and Bonnell, D.: J. Am. Ceram. Soc. 78, 2633 (1995)Google Scholar
16. Sayer, M., Manisingh, A., Arora, A. K. and Lo, A.: Integrat. Ferroelectr. 1, 129 (1992)Google Scholar
17. Joshi, P. C. and Desu, S. B.: J. Appl. Phys. 80, 2349, (1996)Google Scholar