Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-h2mp8 Total loading time: 0.209 Render date: 2021-08-04T09:18:24.026Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Development of ultrafast spectroscopic techniques to study rapid chemical and physical changes in materials under extreme pressure and temperature conditions

Published online by Cambridge University Press:  12 January 2012

Alexander F. Goncharov
Affiliation:
Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd. NW, Washington, DC 20015, U.S.A.
D. Allen Dalton
Affiliation:
Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd. NW, Washington, DC 20015, U.S.A.
R. Stewart McWilliams
Affiliation:
Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd. NW, Washington, DC 20015, U.S.A. Howard University, Washington, DC, 20059, U.S.A.
Mohammad F. Mahmood
Affiliation:
Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd. NW, Washington, DC 20015, U.S.A. Howard University, Washington, DC, 20059, U.S.A.
Get access

Abstract

In the study of materials at extreme pressures and temperatures, there is an enduring need to extend the range of experiments to previously inaccessible regimes. To accomplish this, improvements in diagnostics for in situ material characterization at extremes must proceed in parallel with techniques used to generate extreme states. Simultaneously, there is a need to study material phenomena – e.g. phase transformations and chemical reactions triggered by the application of extreme conditions – on their natural timescales. Here we report on recent developments in the application of ultrafast laser spectroscopic techniques to high-pressure hightemperature experiments on materials confined in a diamond-anvil cell. Using a bright broadband source coupled to ultrafast detection to discriminate signal from high thermal and fluorescent backgrounds, we conducted broadband optical spectroscopy up to 60 GPa and 1560 K. By coupling the broadband source to a monochromatic pulse, nonlinear Coherent Anti- Stokes Raman Spectroscopy (CARS) with high signal brightness was achieved. Optical absorption data in hot compressed O2 and CARS data in N2 at extreme pressures are reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Goncharov, A.F. and Crowhurst, J.C., J. Low Temp. Phys., 139, 727 (2005).CrossRefGoogle Scholar
2. Beck, P., Goncharov, A.F., Struzhkin, V.V., Militzer, B., Mao, H.-k., and Hemley, R.J., Appl. Phys. Lett., 91, 181914 (2007).CrossRefGoogle Scholar
3. Goncharov, A.F., Prakapenka, V.B., Struzhkin, V.V., Kantor, I., Rivers, M.L., and Dalton, D.A., Rev. Sci. Instrum., 81, 113902 (2010).CrossRefGoogle Scholar
4. Goncharov, A.F., Crowhurst, J.C., Struzhkin, V.V., and Hemley, R.J., Phys. Rev. Lett., 101, 095502 (2008).CrossRefGoogle Scholar
5. Dudley, J.M., Genty, G., and Coen, S., Rev. Mod. Phys., 78, 1135 (2006).CrossRefGoogle Scholar
6. Montoya, J.A. and Goncharov, A.F., “ Finite element calculations of the time dependent thermal fluxes in the laser-heated diamond anvil cell”. submitted to J. Appl. Phys., (2011).Google Scholar
7. Santoro, M., Gregoryanz, E., Mao, H.-k., and Hemley, R.J., Solid State Commun., 144, 225 (2007).CrossRefGoogle Scholar
8. Desgreniers, S., Vohra, Y.K., and Ruoff, A.L., J. Phys. Chem., 94, 1117 (1990).CrossRefGoogle Scholar
9. Weck, G., Loubeyre, P., Eggert, J.H., Mezouar, M., and Hanfland, M., Phys. Rev. B, 76, 054121 (2007).CrossRefGoogle Scholar
10. Goncharov, A.F., Subramanian, N., Ravindran, T.R., Somayazulu, M., Prakapenka, V.B., and Hemley, R.J., J. Chem. Phys., 135, 084512 (2011).CrossRefGoogle Scholar
11. Bastea, M., Mitchell, A.C., and Nellis, W.J., Phys. Rev. Lett., 86, 3108 (2001).CrossRefGoogle Scholar
12. Apetz, R. and van Bruggen, M.P.B., J. Am. Ceram. Soc., 86, 480 (2003).CrossRefGoogle Scholar
13. Hellwig, H., Daniels, W.B., Hemley, R.J., Mao, H.-k., Gregoryanz, E., and Yu, Z., J. Chem. Phys., 115, 10876 (2001).CrossRefGoogle Scholar
14. Baer, B.J. and Yoo, C.-S., Rev. Sci. Instr., 76, 013907 (2005).CrossRefGoogle Scholar
15. Baer, B.J., Evans, W.J., and Yoo, C.-S., Phys. Rev. Lett., 98, 235503 (2007).CrossRefGoogle Scholar
16. Kano, H. and Hamaguchi, H.-o., Appl. Phys. Lett., 85, 4298 (2004).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Development of ultrafast spectroscopic techniques to study rapid chemical and physical changes in materials under extreme pressure and temperature conditions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Development of ultrafast spectroscopic techniques to study rapid chemical and physical changes in materials under extreme pressure and temperature conditions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Development of ultrafast spectroscopic techniques to study rapid chemical and physical changes in materials under extreme pressure and temperature conditions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *