Hostname: page-component-5d59c44645-zlj4b Total loading time: 0 Render date: 2024-03-03T15:35:36.216Z Has data issue: false hasContentIssue false

Development of novel bioelectrocatalytic platform based on in situ generated gold nanoparticles for biomedical applications

Published online by Cambridge University Press:  06 March 2012

Prem C. Pandey
Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi- 221005, India.
Dheeraj S. Chauhan
Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi- 221005, India.
Get access


Gold nanoparticles (AuNp) formed using alkoxysilane precursors are utilized in the development of thin organically modified silicates (ormosil) films. The resulting films are optically transparent thereby retaining the optical properties of AuNp. Surface morphology shows that the in situ generated AuNp retained their nanogeometry in the ormosil films. An application of the AuNp encapsulated ormosils is shown in electrocatalytic determination of hydrogen peroxide. For this purpose, potassium ferricyanide is chosen as electron transfer mediator and is encapsulated in the films. Results show that the presence of AuNp in the ormosil matrix dramatically improves the electrochemical behavior of potassium ferricyanide. The ormosil films are utilized for electrocatalytic determination of hydrogen peroxide. In order to investigate the biocompatibility of the ormosil film, horseradish peroxidase (HRP) is incorporated resulting in improvement in oxidation and reduction of peroxide.

Research Article
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1. Cui, H., Zhang, Z. -F. and Shi, M. –J., J. Phys. Chem. B 109, 3099 (2005).Google Scholar
2. Dass, A., Guo, R., Tracy, J. B., Balasubramanian, R., Douglas, A. D. and Murray, R. W., Langmuir 24, 310 (2008).Google Scholar
3. Cho, S. –J., Idrobo, J. –C., Olamit, J., Liu, K., Browning, N. D. and Kauzlarich, S. M., Chem. Mater. 17, 3181 (2005).Google Scholar
4. Rahman, M. A., Son, J. I., Won, M. –S. and Shim, Y. –B., Anal. Chem. 81, 6604, (2009).Google Scholar
5. Guo, R., Wang, H., Peng, C., Shen, M., Pan, M., Cao, X., Zhang, G. and Shi, X., J. Phys. Chem. C 114, 50 (2010).Google Scholar
6. Isaacs, S. R., Cutler, E. C., Park, J. –S., Lee, T. R. and Shon, Y. –S., Langmuir 21, 5689 (2005).Google Scholar
7. Maduraiveeran, G. and Ramaraj, R., J. Electroanal. Chem. 608, 52 (2007).Google Scholar
8. Pandey, P. C., Chauhan, D. S. and Singh, V., Mat. Sci. Eng. C 32, 1 (2012).Google Scholar
9. Pandey, P. C. and Chauhan, D. S., A Process For In situ Generation of Noble Metal Nanoparticles and thereafter Core Shell of the same, Indian Patents 2382/ DEL/2010.Google Scholar
10. de Mattos, L., Gorton, L. and Ruzgas, T., Biosens. Bioelectron. 18, 193 (2003).Google Scholar
11. Moscone, D., D’Ottavi, D., Compagnone, D., Palleschi, G. and Amine, A., Anal. Chem. 73, 2529 (2001).Google Scholar
12. Lukachova, L. V., Kotel’nikova, E. A., D’Ottavi, D., Shkerin, E. A., Karyakina, E. E., Palleschi, G., Curulli, A. and Karyakin, A. A., Bioelectrochemistry 55, 145 (2002).Google Scholar
13. Karyakin, A. A., Electroanalysis 13, 813 (2001).Google Scholar
14. Karyakin, A. A., Karyakina, E. E. and Gorton, L., Anal. Chem. 72, 1720 (2000).Google Scholar
15. Wang, G., Zhou, J. and Li, J., Biosens. Bioelectron. 22, 2921 (2007).Google Scholar
16. Haghighi, B., Hamidi, H. and Gorton, Lo, Sens. Actuators B 147, 270 (2010).Google Scholar