Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-2rqk5 Total loading time: 0.198 Render date: 2021-06-24T16:36:34.926Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Development of Bisphosphonate-Calcium Phosphate Composites and Drug Release Characteristic

Published online by Cambridge University Press:  12 April 2012

Hidekuni Kameda
Affiliation:
Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
Tomohiko Yoshioka
Affiliation:
Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
Toshiyuki Ikoma
Affiliation:
Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
Junzo Tanaka
Affiliation:
Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
Get access

Abstract

Bisphosphonate (Bp) was adsorbed on the surface of crystalline calcium phosphates (CP); hydroxyapatite (HAp), octacalcium phosphate (OCP) and Dicalcium phosphate dehydrate (DCPD). The amount of Bp adsorbed was the largest for DCPD per unit surface area, while the amount was the largest for HAp per unit weight. The composites of Bp and amorphous calcium phosphate (ACP) were synthesized by titrating calcium acetate solution into phosphate buffer solution containing Bp. The amount of Bp doped in the composites was 366 μg / mg and was approximately 7 times larger than those of Bp adsorbed on the crystalline Calcium phosphates. TG-DTA measurements of a Bp-calcium and the composite indicated exothermic peaks due to Bp combustion, of which temperature were shifted to higher temperature for the composite. Bp in the composites was gradually released into phosphate buffered saline, while Bp was rapidly released into acetate buffer solution accompanied with the dissolution of ACP. This result suggests that the composite of Bp and ACP has potential for a drug-carrier releasing Bp in response to the condition of osteoclastic bone resorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Sakaki, A., Boyce, BF., Cancer research. 55. 35513557 (1995).Google Scholar
2. Fleisch, H., Osteoporosis international. 3. 1522 (1993).CrossRefGoogle Scholar
3. Henry Browning, F., Fogler, HS., Lamgmuir. 12. 52315238 (1996).CrossRefGoogle Scholar
4. Tarassoff. New england journal of medicine. 353. 2728–2728 (2005).CrossRefGoogle Scholar
5. Ikoma, T. et al. . J. Nanosci. Nanotech, 7, 822827 (2007).CrossRefGoogle Scholar
6. Koba, M.. Acta poloniae pharmaceutica. 65. 289294 (2008).Google Scholar
7. Ito, A., Senda, K., Biomed. Mater. 1, 134139 (2006).CrossRefGoogle Scholar
8. Ohta, K., Monma, H.. Takahashi, S., Journal of the ceramic society of Japan. 107. 577581 (1999).CrossRefGoogle Scholar
9. Nancolla, GH., Mohan, MS., Archives of oral biology. 15. 731 (1970).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Development of Bisphosphonate-Calcium Phosphate Composites and Drug Release Characteristic
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Development of Bisphosphonate-Calcium Phosphate Composites and Drug Release Characteristic
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Development of Bisphosphonate-Calcium Phosphate Composites and Drug Release Characteristic
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *