Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-x9ds4 Total loading time: 0.222 Render date: 2023-02-03T08:42:34.820Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Determining Stress-strain Curves for Thin Films by Experimental/Computational Nanoindentation

Published online by Cambridge University Press:  01 February 2011

Baik-Woo Lee
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151–744, Korea
Yeol Choi
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151–744, Korea
Yun-Hee Lee
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151–744, Korea
Ju-Young Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151–744, Korea
Dongil Kwon
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151–744, Korea
Get access

Abstract

The nanoindentation technique has great promise in evaluating mechanical properties such as nanohardness and elastic modulus at micrometer or nanometer scales, since sample preparation and testing procedures are very easy. However, the nanohardness and elastic modulus cannot be directly related to basic material flow properties. Here a novel and simple experimental/computational method is proposed to extract stress-strain curves based on finite-element modeling (FEM) of nanoindentation. This method was verified for bulk Al by comparing the stress-strain curves extracted with those obtained from tensile testing, and was applied to Al thin films (0.5 μm and 1 μm) deposited on a Si substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arzt, E., Acta Mater. 46, 5611 (1998).CrossRefGoogle Scholar
2. Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A. and Suresh, S., Acta Mater. 49, 3899 (2001).CrossRefGoogle Scholar
3. Jayaraman, S., Hahn, G.T., Oliver, W.C., Rubin, C.A. and Bastias, P.C., Int. J. Solids Structures 35, 365 (1998).CrossRefGoogle Scholar
4. Stauss, S., Schwaller, P., Bucaille, J.-L., Rabe, R., Rohr, L., Michler, J. and Blank, E., Microelectron. Eng. 67–68, 818 (2003).CrossRefGoogle Scholar
5. Bouzakis, K.-D., Michailidis, N. and Erkens, G., Surf. Coat. Tech. 142–244, 102 (2001).CrossRefGoogle Scholar
6. Cheng, Y.T. and Cheng, C.M., J. Mater. Res. 14, 3493 (1999).CrossRefGoogle Scholar
7. ABAQUS/Standard (Hibbitt, Karlsson and Sorensen, Inc., Pawtucket, RI, 1998).Google Scholar
8. Oliver, W.C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
9. MPDB Software, Temperature Dependent Elastic and Thermal Properties Database (MA: JAHM Software, 2002).Google Scholar
10. Pharr, G.M., Mat. Sci. Eng. A-Struct. 253, 151 (1998).CrossRefGoogle Scholar
11. Bahr, D.F., Kramer, D.E. and Gerberich, W.W., Acta Mater. 46, 3605 (1998).CrossRefGoogle Scholar
12. Ma, D., Xu, K., He, J. and Lu, J., Surf. Coat. Tech. 116–119, 128 (1999).CrossRefGoogle Scholar
13. Son, D., Jeong, J.-h. and Kwon, D., Thin Solid Films 437, 182 (2003).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Determining Stress-strain Curves for Thin Films by Experimental/Computational Nanoindentation
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Determining Stress-strain Curves for Thin Films by Experimental/Computational Nanoindentation
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Determining Stress-strain Curves for Thin Films by Experimental/Computational Nanoindentation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *