Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-8cb25 Total loading time: 0.264 Render date: 2022-11-27T09:58:52.326Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Determining hydraulic properties of concrete and mortar by inverse modelling

Published online by Cambridge University Press:  28 March 2012

Sébastien Schneider
Affiliation:
Performance Assessments Unit, Belgian Nuclear Research Centre SCKCEN, 2400 Mol, Belgium.
Dirk Mallants
Affiliation:
Performance Assessments Unit, Belgian Nuclear Research Centre SCKCEN, 2400 Mol, Belgium.
Diederik Jacques
Affiliation:
Performance Assessments Unit, Belgian Nuclear Research Centre SCKCEN, 2400 Mol, Belgium.
Get access

Abstract

This paper presents a methodology and results on estimating hydraulic properties of the concrete and mortar considered for the near surface disposal facility in Dessel, Belgium, currently in development by ONDRAF/NIRAS. In a first part, we estimated the van parameters for the water retention curve for concrete and mortar obtained by calibration (i.e. inverse modelling) of the van Genuchten model [1] to experimental water retention data [2]. Data consisted of the degree of saturation measured at different values of relative humidity. In the second part, water retention data and data from a capillary suction experiment on concrete and mortar cores was used jointly to successfully determine the van Genuchten retention parameters and the Mualem hydraulic conductivity parameters (including saturated hydraulic conductivity) by inverse modelling.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. van Genuchten, M.Th., Soil Sci. Soc. Am. J., 44, 892 (1980).10.2136/sssaj1980.03615995004400050002xCrossRefGoogle Scholar
2. ONDRAF/NIRAS, NIROND-TR 2009-17 E V1 (2009) Google Scholar
3. Mualem, Y., Water Resources Research, 12, 513 (1976).10.1029/WR012i003p00513CrossRefGoogle Scholar
4. Maierhofer, C., Arndt, R., and Röllig, M., Infrared Physics & Technology, 49, 213, (2007).10.1016/j.infrared.2006.06.007CrossRefGoogle Scholar
5. van Genuchten, M.Th., Leij, F.J., and Yates, S.R., EPA Report 600/2-91/065, U.S. Salinity Laboratory, USDA, ARS, Riverside, California, (1991).Google Scholar
6. Rockhold, M.L., Fayer, M.J. and Heller, P.R., Physical and hydraulic properties of sediments and engineered materials associated with grouted double-shell tank waste disposal at Hanford. PNLL Richland, Washington, (1993).10.2172/10102958CrossRefGoogle Scholar
7. Šimůnek, J., Šejna, M., and van Genuchten, M. Th., The HYDRUS-1D software for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated media. Dep. Environ. Sciences, UCR, Riverside, CA, 281 pp. (2009).Google Scholar
8. Schneider, S., GENAPAC – A genetic algorithm for parameter calibration. SCK•CEN report ER-140, (2010).Google Scholar
9. Goldberg, D. E., and Deb, K., in: Foundations of Genetic Algorithms, edited by Rawlins, G.J.E., Morgan Kaufmann Publishers, San Mateo, CA, p. 69, (1991).Google Scholar
10. Hall, C., Cement and Concrete Research, 37, 378 (2007).10.1016/j.cemconres.2006.10.004CrossRefGoogle Scholar
11. Schaap, M.G., Leij, F.J., Soil Sci. Soc. Am. J., 64, 843 (2000).10.2136/sssaj2000.643843xCrossRefGoogle Scholar
12. Baroghel-Bouny, V., Mainguy, M., Lassabatere, T., and Coussy, O., Cement and Concrete Research 29, 1225 (1999).10.1016/S0008-8846(99)00102-7CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Determining hydraulic properties of concrete and mortar by inverse modelling
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Determining hydraulic properties of concrete and mortar by inverse modelling
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Determining hydraulic properties of concrete and mortar by inverse modelling
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *