Skip to main content Accessibility help
×
Home
Hostname: page-component-66d7dfc8f5-g2shf Total loading time: 0.35 Render date: 2023-02-08T11:59:54.334Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Design of New Structural Types from Oxocentered Tetrahedra : Continuous Polycationic Series from 1D Chains to 2D Planes in New Bismuth Compounds

Published online by Cambridge University Press:  26 February 2011

Mentre Olivier
Affiliation:
mentre@ensc-lille.fr, UCCS, CS, Ecole Nationale Supérieure de Chimie de Lille, Cité Scientifique - Bâtiment C7 -BP 90108, villeneuve d'ascq, 59655, France
Colmont Marie
Affiliation:
marie.colmont@ensc-lille.fr, UCCS, Villeneuve d'Ascq, 59652, France
Huvé Marielle
Affiliation:
marielle.huve@ensc-lille.fr, UCCS, Villeneuve d'Ascq, 59652, France
Get access

Abstract

In the Bi2O3-MO-P2O5 diagrams, most of the inorganic frameworks display Bi-M-O polycationic ribbons isolated by XO4 groups and interstitial cationic channels. They are formed of edge sharing O(Bi,M)4 tetrahedra. The width of the ribbons coexisting in the structures and their arrangement is changed from one compound to the next one. Due to mixed Bi3+/M2+ particular positions, a great chemical flexibility and a great degree of disorder may exist. It has been possible to extend ribbons to infinite [Bi2O2]2+ like sheets, sandwiched between XO4 based layers. In addition to this fascinating continuous polymerization from 1D chains to 2D sheets, O(Bi,M)4 and XO4 groups form ideal structural units for the designing of new materials through empirical structural rules that has been established.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Naray-Szabo, , S. Naturwissenschaften 31, 466–466, (1943)CrossRefGoogle Scholar
2. Lander, J. J. Acta Crystallograph. 4, 148, (1951).CrossRefGoogle Scholar
3. Darriet, J.; Subramanian, M. A.., Journal of Materials Chemistry, 5(4), 543–52, (1995).CrossRefGoogle Scholar
4. Kim, Namjun; Vannier, Rose-Noelle; P., Grey, Clare, Chemistry of Materials, 17(8), 19521958, (2005).CrossRefGoogle Scholar
5. Aurivillius, B., Arkiv. Kemi., 1, 463, (1949).Google Scholar
6. O'Keeffe, M.; Hyde, B. G.., Structure and Bonding, 61, 77144, (1985).CrossRefGoogle Scholar
7. Joubert, Ganne, Vannier, O., M., , R. N. and Mairesse, G., Solide State Ionics, 83, 199, (1996).CrossRefGoogle Scholar
8. Joubert, , Jouanneaux, A., Ganne, O., M., Vannier, R. N. and Mairesse, G., Solide State Ionics, 73, 309, (1994).CrossRefGoogle Scholar
9. Abraham, F.;Ketatni, M., European Journal of Solid State Inorganic Chemistry, 32, 429437, (1995).Google Scholar
10. Ketatni, M.;Abraham, F.;Mentre, O., Solid State Sciences, 1, 449460, (1999).CrossRefGoogle Scholar
11. Abraham, F., Ketatni, M., Mairesse, G., and Mernari, B., Eur. J. Solid State Chem. 31, 313 (1994).Google Scholar
12. Mizrahi, A., Wignacourt, J. P. and Steinfink, H., J. Solid State Chem. 133, 516 (1997).CrossRefGoogle Scholar
13. Mizrahi, A., Wignacourt, J. P., Drache, M. and Conflant, P., J. Mater. Chem. 5, 901 (1995).CrossRefGoogle Scholar
14. Ketatni, M., Mernari, B., Abraham, F. and Mentre, O., J. solid State Chem. 153, 48 (2000).CrossRefGoogle Scholar
15. Giraud, S., Mizrahi, A., Drache, M., Conflant, P., Wignacourt, J. P. and Steinfink, H., Solid State Sciences 3, 593 (2001).CrossRefGoogle Scholar
16. Mentré, O., El, Mostafa Ketatni, Colmont, M., Huvé, M., Abraham, F. and Petricek, V., Journal of American Society; 128(33); 1085710867, (2006).CrossRefGoogle Scholar
17. Abraham, F., Cousin, O., Mentre, O., Ketatni, E. M., Journal of Solid State Chemistry, 167, 168, (2002).CrossRefGoogle Scholar
18. Ketatni, E. M., Huve, M., Abraham, F., Mentre, O., Journal of Solid State Chemistry, 172, 327, (2003).CrossRefGoogle Scholar
19. Sillen, L., , Z.. Anorg. Algem, Chem., 246, 331, (1941).CrossRefGoogle Scholar
20. Bergerhoff, G.; Paeslack, J. Z. Kristallogr., 126, 112, (1968).CrossRefGoogle Scholar
21. Cornei, N.; Tancret, N.; Abraham, F.; Mentre, O. Inorg. Chem.; (Communication); 45(13); 48864888, (2006).CrossRefGoogle Scholar
22. Caro, P. E. J. Less-Common Met., 16, 367, (1968).CrossRefGoogle Scholar
23. Carre, D.; Guittard, M.; Jaulmes, S.; Mazurier, A.; Palazzi, M.; Pardo, M. P.; Laurelle, P.; Flahaut, J. J. Solid State Chem., 55, 287, (1984).CrossRefGoogle Scholar
24. Schleid, T. Eur. J. Solid State Inorg. Chem., 33, 227, (1996).Google Scholar
25. Schleid, T. Mater. Sci. Forum, 163, 315, (1999).Google Scholar
26. Krivovichev, S. V.; Filatov, S. K.; Semenova, T. F. Chem. Rev., 67, 137, (1967).Google Scholar
27. Krivovichev, S. V.; Filatov, T. F. Am. Mineral., 84, 1099, (1999).CrossRefGoogle Scholar
28. Krivovichev, S. V.; Armbruster, T.; Depmeier, W. J. Solid State Chem., 177, 1321, (2004).CrossRefGoogle Scholar
29. Krivovitchev, S. V.; Avdontsva, E. Y.; Burns, P. C. Z. Anorg. Allg. Chem., 630, 558, (2004).CrossRefGoogle Scholar
30. Krivovitchev, S. V.; Siidra, O. I.; Nazarchuk, E. V.; Burns, P. C.; Depmeier, W. F. Inorg. Chem., 45, 3846, (2006).CrossRefGoogle Scholar
31. Colmont, M.; Huvé, M.; Ketatni, E. M.; Abraham, F. and Mentré, O.; JSSC, 2003,176.Google Scholar
32. Colmont, M.; Huvé, M.; Abraham, F. and Mentré, O.; JSSC, 2004,171, 4149.Google Scholar
33. Colmont, M.; Huvé, M. and Mentré, O.; Inorg. Chem.; 2006; 45(17); 66126621.CrossRefGoogle Scholar
34. Huvé, M.; Colmont, M. and Mentré, O.; Inorg. Chem.; 2006; 45(17); 66046611.CrossRefGoogle Scholar
35. Huve, M.; Colmont, M.; Mentre, O., Chem. Mater.; 2004; 16(13); 26282638.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Design of New Structural Types from Oxocentered Tetrahedra : Continuous Polycationic Series from 1D Chains to 2D Planes in New Bismuth Compounds
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Design of New Structural Types from Oxocentered Tetrahedra : Continuous Polycationic Series from 1D Chains to 2D Planes in New Bismuth Compounds
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Design of New Structural Types from Oxocentered Tetrahedra : Continuous Polycationic Series from 1D Chains to 2D Planes in New Bismuth Compounds
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *