Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-21T08:16:19.705Z Has data issue: false hasContentIssue false

Design of New Structural Types from Oxocentered Tetrahedra : Continuous Polycationic Series from 1D Chains to 2D Planes in New Bismuth Compounds

Published online by Cambridge University Press:  26 February 2011

Mentre Olivier
Affiliation:, UCCS, CS, Ecole Nationale Supérieure de Chimie de Lille, Cité Scientifique - Bâtiment C7 -BP 90108, villeneuve d'ascq, 59655, France
Colmont Marie
Affiliation:, UCCS, Villeneuve d'Ascq, 59652, France
Huvé Marielle
Affiliation:, UCCS, Villeneuve d'Ascq, 59652, France
Get access


In the Bi2O3-MO-P2O5 diagrams, most of the inorganic frameworks display Bi-M-O polycationic ribbons isolated by XO4 groups and interstitial cationic channels. They are formed of edge sharing O(Bi,M)4 tetrahedra. The width of the ribbons coexisting in the structures and their arrangement is changed from one compound to the next one. Due to mixed Bi3+/M2+ particular positions, a great chemical flexibility and a great degree of disorder may exist. It has been possible to extend ribbons to infinite [Bi2O2]2+ like sheets, sandwiched between XO4 based layers. In addition to this fascinating continuous polymerization from 1D chains to 2D sheets, O(Bi,M)4 and XO4 groups form ideal structural units for the designing of new materials through empirical structural rules that has been established.

Research Article
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1. Naray-Szabo, , S. Naturwissenschaften 31, 466–466, (1943)Google Scholar
2. Lander, J. J. Acta Crystallograph. 4, 148, (1951).Google Scholar
3. Darriet, J.; Subramanian, M. A.., Journal of Materials Chemistry, 5(4), 543–52, (1995).Google Scholar
4. Kim, Namjun; Vannier, Rose-Noelle; P., Grey, Clare, Chemistry of Materials, 17(8), 19521958, (2005).Google Scholar
5. Aurivillius, B., Arkiv. Kemi., 1, 463, (1949).Google Scholar
6. O'Keeffe, M.; Hyde, B. G.., Structure and Bonding, 61, 77144, (1985).Google Scholar
7. Joubert, Ganne, Vannier, O., M., , R. N. and Mairesse, G., Solide State Ionics, 83, 199, (1996).Google Scholar
8. Joubert, , Jouanneaux, A., Ganne, O., M., Vannier, R. N. and Mairesse, G., Solide State Ionics, 73, 309, (1994).Google Scholar
9. Abraham, F.;Ketatni, M., European Journal of Solid State Inorganic Chemistry, 32, 429437, (1995).Google Scholar
10. Ketatni, M.;Abraham, F.;Mentre, O., Solid State Sciences, 1, 449460, (1999).Google Scholar
11. Abraham, F., Ketatni, M., Mairesse, G., and Mernari, B., Eur. J. Solid State Chem. 31, 313 (1994).Google Scholar
12. Mizrahi, A., Wignacourt, J. P. and Steinfink, H., J. Solid State Chem. 133, 516 (1997).Google Scholar
13. Mizrahi, A., Wignacourt, J. P., Drache, M. and Conflant, P., J. Mater. Chem. 5, 901 (1995).Google Scholar
14. Ketatni, M., Mernari, B., Abraham, F. and Mentre, O., J. solid State Chem. 153, 48 (2000).Google Scholar
15. Giraud, S., Mizrahi, A., Drache, M., Conflant, P., Wignacourt, J. P. and Steinfink, H., Solid State Sciences 3, 593 (2001).Google Scholar
16. Mentré, O., El, Mostafa Ketatni, Colmont, M., Huvé, M., Abraham, F. and Petricek, V., Journal of American Society; 128(33); 1085710867, (2006).Google Scholar
17. Abraham, F., Cousin, O., Mentre, O., Ketatni, E. M., Journal of Solid State Chemistry, 167, 168, (2002).Google Scholar
18. Ketatni, E. M., Huve, M., Abraham, F., Mentre, O., Journal of Solid State Chemistry, 172, 327, (2003).Google Scholar
19. Sillen, L., , Z.. Anorg. Algem, Chem., 246, 331, (1941).Google Scholar
20. Bergerhoff, G.; Paeslack, J. Z. Kristallogr., 126, 112, (1968).Google Scholar
21. Cornei, N.; Tancret, N.; Abraham, F.; Mentre, O. Inorg. Chem.; (Communication); 45(13); 48864888, (2006).Google Scholar
22. Caro, P. E. J. Less-Common Met., 16, 367, (1968).Google Scholar
23. Carre, D.; Guittard, M.; Jaulmes, S.; Mazurier, A.; Palazzi, M.; Pardo, M. P.; Laurelle, P.; Flahaut, J. J. Solid State Chem., 55, 287, (1984).Google Scholar
24. Schleid, T. Eur. J. Solid State Inorg. Chem., 33, 227, (1996).Google Scholar
25. Schleid, T. Mater. Sci. Forum, 163, 315, (1999).Google Scholar
26. Krivovichev, S. V.; Filatov, S. K.; Semenova, T. F. Chem. Rev., 67, 137, (1967).Google Scholar
27. Krivovichev, S. V.; Filatov, T. F. Am. Mineral., 84, 1099, (1999).Google Scholar
28. Krivovichev, S. V.; Armbruster, T.; Depmeier, W. J. Solid State Chem., 177, 1321, (2004).Google Scholar
29. Krivovitchev, S. V.; Avdontsva, E. Y.; Burns, P. C. Z. Anorg. Allg. Chem., 630, 558, (2004).Google Scholar
30. Krivovitchev, S. V.; Siidra, O. I.; Nazarchuk, E. V.; Burns, P. C.; Depmeier, W. F. Inorg. Chem., 45, 3846, (2006).Google Scholar
31. Colmont, M.; Huvé, M.; Ketatni, E. M.; Abraham, F. and Mentré, O.; JSSC, 2003,176.Google Scholar
32. Colmont, M.; Huvé, M.; Abraham, F. and Mentré, O.; JSSC, 2004,171, 4149.Google Scholar
33. Colmont, M.; Huvé, M. and Mentré, O.; Inorg. Chem.; 2006; 45(17); 66126621.Google Scholar
34. Huvé, M.; Colmont, M. and Mentré, O.; Inorg. Chem.; 2006; 45(17); 66046611.Google Scholar
35. Huve, M.; Colmont, M.; Mentre, O., Chem. Mater.; 2004; 16(13); 26282638.Google Scholar