Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-wb78c Total loading time: 0.144 Render date: 2021-06-24T08:54:42.805Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Density Functional Theory for Thin Film Adhesion

Published online by Cambridge University Press:  21 February 2011

L. Senbetu
Affiliation:
Lockheed Research and Development Division, D91-10 B255 3251 Hanover St., Palo Alto, Ca. 94304-1191
J. G. Pronko
Affiliation:
Lockheed Research and Development Division, D91-10 B255 3251 Hanover St., Palo Alto, Ca. 94304-1191
T. T. Bardin
Affiliation:
Lockheed Research and Development Division, D91-10 B255 3251 Hanover St., Palo Alto, Ca. 94304-1191
Get access

Abstract

A theoretical formalism to describe interface adhesion phenomena between materials has been developed. In this model electron densities, potentials, and adhesion energies of thin metal films at metal–semiconductor and metal–insulator interfaces are derived through a partially self–consistent calculation. The theory is based on a density–functional formalism applied to a simple model of the system in which the metal is replaced by a uniform positive background and the semiconductor by a continuum with a static dielectric constant. Numerical results of the metal electron density distribution and effective potential of Au–vacuum and Au–GaAs system, and the adhesion energy at Au–GaAs interface are presented. The interface energies are then used to estimate the adhesion strength and compare with experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Hohenberg, P. and Kohn, W., Phys. Rev. B136, 864 (1964); W. Kohn and L. J. Sham, P. Hohenberg and W. Kohn, Phys. Rev. A140, 1133 (1970).CrossRefGoogle Scholar
2. Monnier, R. and Perdew, J. P., Phys. Rev. B17, 2595(1978).CrossRefGoogle Scholar
3. Nieminen, R. M., J. Phys. F7, 375 (1977).CrossRefGoogle Scholar
4. Lang, N. D. and Kohn, W., Phys. Rev. B1, 4555(1970);B7, 3541 (1973).CrossRefGoogle Scholar
5. Schulte, F. K., Surface Sci. 55, 427 (1976).CrossRefGoogle Scholar
6. Hedin, L. and Lundqvist, B. I., J. Phys. C4, 2664 (1971).Google Scholar
7. Inglesfield, J. E. and Wikborg, E., J. Phys. F5, 1475 (1975).CrossRefGoogle Scholar
8. Bardin, T. T., Pronko, J. G. and Kinnel, D. K., Mat. Res. Soc. Symp. Proc. 77, 731 (1987).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Density Functional Theory for Thin Film Adhesion
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Density Functional Theory for Thin Film Adhesion
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Density Functional Theory for Thin Film Adhesion
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *