Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-9jmqz Total loading time: 0.212 Render date: 2021-05-06T13:27:07.498Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Dendrimer Based Nano-Containers/Scaffolding for Targeted Diagnostics and Therapies

Published online by Cambridge University Press:  12 July 2019

Donald Tomalia
Affiliation:
Dendritic Nanotechnologies, Inc, Central Michigan University, Mt. Pleasant, MI 48858 USA
Lori Reyna
Affiliation:
Dendritic Nanotechnologies, Inc, Central Michigan University, Mt. Pleasant, MI 48858 USA
Sonke Svenson
Affiliation:
Dendritic Nanotechnologies, Inc, Central Michigan University, Mt. Pleasant, MI 48858 USA
Get access

Abstract

Format

This is a copy of the slides presented at the meeting but not formally written up for the volume.

Abstract

Dendrimers are routinely synthesized as tuneable nanostructures that are designed and regulated as a function of their size, shape, surface chemistry and interior void space. They are obtained with structural control approaching that of traditional biomacromolecules such as DNA/RNA or proteins and are distinguishable by their precise nanoscale scaffolding and nano-container properties. This lecture will review progress on the use of these features for both targeted diagnostic and drug delivery applications. Recent efforts have focused on the synthesis and preclinical evaluation of a multi-purpose, STARBURST® poly(amidoamine) (PAMAM) dendrimer prototype that exhibits properties suitable for use as: (i) a targeted, diagnostic MRI contrast agent (ii) and/or for controlled delivery of cancer therapies. Special emphasis will be placed on the lead candidate, namely; (core: 1,4-diaminobutane; G=4.5); [dendri-PAMAM(CO2Na)64]. This dendritic nanostructure was selected based on a very favorable nanotoxicity profile*, the expectation that it will exhibit desirable kidney excretion properties and demonstrated targeting features.*The Nanotechnology Characterization Laboratory (NCL), an affiliate of the National Cancer Institute (NCI) has studied the lead compound and found it to be extraordinarily benign and highly biocompatible.

Type
Slide Presentations
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Dendrimer Based Nano-Containers/Scaffolding for Targeted Diagnostics and Therapies
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Dendrimer Based Nano-Containers/Scaffolding for Targeted Diagnostics and Therapies
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Dendrimer Based Nano-Containers/Scaffolding for Targeted Diagnostics and Therapies
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *