Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-18T01:31:45.422Z Has data issue: false hasContentIssue false

Degradation of electrical properties of small molecule organic solar cells under oxygen and moisture

Published online by Cambridge University Press:  11 June 2014

Laura Ciammaruchi
CHOSE – Center for Hybrid and Organic Solar Energy, University of Rome Tor Vergata, Italy Chemical Engineering department, University of Rochester, NY, USA
Aldo Di Carlo
CHOSE – Center for Hybrid and Organic Solar Energy, University of Rome Tor Vergata, Italy
Ching W. Tang
Chemical Engineering department, University of Rochester, NY, USA
Get access


We investigated the photovoltaic (PV) parameters of a planar hetero-junction solar cell with di-[4-(N,Nditolyl-amino)-phenyl] cyclohexane (TAPC) as donor (D) and C60 as acceptor (A), upon exposing the acceptor side to oxygen and moisture. We found that for the same time of exposure, even minor oxygen amounts lead to more detrimental results compared to moisture. We argue that the photo-conversion efficiency (PCE) decreases due to creation of recombination centers at the interface, which induce losses in exciton diffusion and charge generation. Under the same conditions, we also registered a direct connection between the cell PV parameters’ decay and a C60 thin-film conductivity loss.

Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Reese, M. O., Morfa, A. J., White, M. S., Kopidakis, N., Shaheen, S. E., Rumbles, G., and Ginley, D. S.. Sol. Ener. Mat. Sol. Cells, 92:746, 2008 CrossRefGoogle Scholar
Neugebauer, H., Brabec, C., Hummelen, J. C., and Sariciftci, N. S.. Solar Energy Materials and Solar Cells, 61:35, 2000 CrossRefGoogle Scholar
Seemann, A., Egelhaaf, H.-J., Brabec, C. J., and Hauch, J. A.. Organic Electronics, 10:1424, 2009 CrossRefGoogle Scholar
Norrman, K., Gevorgyan, S. A., and Krebs, F. C.. Applied Materials and Interfaces, 1:102, 2009 CrossRefGoogle Scholar
Zhang, M., Wang, H. and Tang, C. W., Applied Physics Letters 97, 143503 (2010)CrossRefGoogle Scholar
Grossiord, N, et al. ., Organic Electronics, 2012. 13(3): p. 432456 CrossRefGoogle Scholar
Turak, A., RSC Advances, 2013. 3(18): p. 61886225.CrossRefGoogle Scholar
Sato, N. et al. ., Chemical Physics, 1986. 109(1): p. 157162.CrossRefGoogle Scholar
Ciammaruchi, L. et al. ., Delineation of degradation patterns of C60-based organic solar cells under different environments, in preparation.Google Scholar
Lunt, R.R. et al. ., Journal of Applied Physics, 2009. 105(5): p. 053711 CrossRefGoogle Scholar
Nguyen, T., Rendu, P. L., Gaudin, O., Lee, A., Jackman, R., and Huang, C.. Thin Solid Films, 511:338, 2006 CrossRefGoogle Scholar
Nelson, J., Kirkpatrick, J., and Ravirajan, P., Physical Review B, 2004. 69(3): p. 035337 CrossRefGoogle Scholar
Hamed, et al. ., Physical Review B (Condensed Matter), Volume 47, Issue 16, April 15, 1993, pp.1087310880 CrossRefGoogle Scholar
Onoe, J. et al. ., Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1998. 16(2): p. 385388 CrossRefGoogle Scholar
Jaime, M. and Nuñez Regueiro, M., Applied Physics A, 1995. 60(3): p. 289292.CrossRefGoogle Scholar
Hermenau, M. et al. ., Solar Energy Materials and Solar Cells, 2011. 95(5): p. 12681277 CrossRefGoogle Scholar