Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T14:53:12.891Z Has data issue: false hasContentIssue false

Defect Control and Defect Engineering of Transition-metal Silicides

Published online by Cambridge University Press:  26 February 2011

Haruyuki Inui
Affiliation:
haruyuki.inui@materials.mbox.media.kyoto-u.ac.jp, Kyoto University, Department of Materials Science and Engineering, Sakyo-ku, Kyoto, 606-8501, Japan, +81-75-753-5467, +81-75-753-5461
Katsushi Tanaka
Affiliation:
k.tanaka@materials.mbox.media.kyoto-u.ac.jp, Kyoto University, Department of Materials Science and Engineering, Sakyo-ku, Kyoto, 606-8501, Japan
Kyosuke Kishida
Affiliation:
k.kishida@materials.mbox.media.kyoto-u.ac.jp, Kyoto University, Department of Materials Science and Engineering, Sakyo-ku, Kyoto, 606-8501, Japan
Get access

Abstract

The microstructure, defect structure and thermoelectric properties of two different semiconducting transition-metal silicides, ReSi1.75 and Ru2Si3 upon alloying with a substitutional element with a valence electron number different from that of the constituent metal have been investigated in order to see if the crystal and defect structures of these silicides and thereby their physical properties can be controlled through defect engineering according to the valence electron counting rule. The Si vacancy concentration and its arrangement can be successfully controlled in ReSi1.75 while the relative magnitude of the metal and silicon subcell dimensions in the chimney-ladder structures can be successfully controlled in Ru2Si3. As a result, the improvement in the thermoelectric properties and the p- to n-type conduction transition are successfully achieved respectively for these semiconducting transition-metal silicides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Borisenko, V.E. (Ed.), Semiconducting Silicides; Springer, Berlin, (2000).Google Scholar
2. Lange, H., MRS Symp. Proc., 402, 307 (1996).Google Scholar
3. Nolas, G.S., Sharp, J. and Goldsmid, H. J., Thermoelectrics: Basic Principles and New Materials Developments, Springer, New York, NY, U. S. A. (2001).Google Scholar
4. Nolas, G.S., Cohn, J.L., Slack, G. A. and Schujman, S.B., Appl. Phys. Lett., 73, 178 (1998).Google Scholar
5. Becker, J.P.. Mahan, J.E. and Long, R.G., J. Vac. Sci. Tech. A, 13, 1133 (1995).Google Scholar
6. Nesphor, V.S. and Samsonov, G.V., Phys. Met. Metallogr., 11, 146 (1960).Google Scholar
7. Jorda, J.L., Ishikawa, M. and Muller, J., J. Less-Comm. Met., 85, 27 (1982).Google Scholar
8. Gottlieb, U., Lambert-Andron, B., Nava, F., Affronte, M., Laborde, O., Rouault, A. and Madar, R., J. Appl. Phys. 78, 3902 (1995).Google Scholar
9. Sakamaki, Y., Kuwabara, K., Gu, J-J., Inui, H., Yamaguchi, M., Yamamoto, A. and Obara, H., Mater. Sci. Forum, 426, 1777 (2003).Google Scholar
10. Inui, H., MRS Symp. Proc., 886,219 (2006).Google Scholar
11. Poutcharovsky, D.J., Yvon, K., Parthé, E., J Less-Comm. Met., 40, 139 (1975).Google Scholar
12. Susz, C.P., Muller, J., Yvon, K., Parthé, E., J Less-Comm. Met., 71, 1 (1980).Google Scholar
13. Simkin, B.A., Hayashi, Y. and Inui, H., Intermetallics, 13, 1225 (2005).Google Scholar
14. Simkin, B.A., Ishida, A., Okamoto, N.L., Kishida, K., Tanaka, K. and Inui, H., Acta Mater., 54, 2857 (2006).Google Scholar
15. Anderson, J.S., J. Chem. Soc. Dalton Trans., 1107 (1973).Google Scholar
16. Anderson, J.S., Collen, B., Kuylenstierna, U. and Magneli, A., Acta Chem. Scand. 11, 1641 (1957).Google Scholar
17. Rowe, D.M. (Ed.), CRC Handbook of Thermoelectrics, CRC, Boca Raton, FL, U. S. A., (1995).Google Scholar
18. Nowotny, H., The Chemistry of Extended Defects in Non-Metallic Solids, ed. By Eyring, E.R. and O'Keefe, M., Amsterdam: North-Holland, p. 223 (1970).Google Scholar
19. Ye, H.Q., Amelinckx, S., J. Solid State Chem., 61, 8 (1986).Google Scholar
20. Völlenkle, H., Wittmann, A., Nowotny, H., Monatshefte für Chemie, 97, 506 (1966).Google Scholar
21. Flieher, G., Völlenkle, H., Nowotny, H., Monatshefte für Chemie, 99, 2408 (1968).Google Scholar
22. Lu, G., Lee, S., Lin, J., You, L., Sun, J. and Schmidt, J.T., J Solid State Chem. 164, 210 (2002).Google Scholar
23. Fredrickson, D.C., Lee, S., Hoffmann, R. and Lin, J., Inorg. Chem., 43, 6151 (2004).Google Scholar
24. Imai, Y. and Watanabe, A., Intermetallics, 13, 233 (2005).Google Scholar
25. Fredrickson, D.C., Lee, S., Hoffmann, R. and Lin, J., Inorg. Chem., 43, 6159 (2004).Google Scholar