Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-zzcdp Total loading time: 0.253 Render date: 2021-12-08T11:13:22.406Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Cubic Boron Nitride Crystals Grown at High Pressure: PN Junction, Crystallographic Polarity and Some Properties

Published online by Cambridge University Press:  26 February 2011

Osamu Mishima*
Affiliation:
National Institute for Research in Inorganic Materials, 1-1, Namiki, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

Studies on the cubic boron nitride (cBN) crystals grown by the temperature difference method at high pressure are reviewed. The electron beam induced current measurement, the electrical measurement, and the optical measurement demonstrated that the cBN is a good potential candidate as a wide-gap semiconductor material. The Raman spectrum and the reflectance and transmittance spectra of the cBN were obtained. The crys-tallographic polarity of cBN crystals was directly determined from the Rutherford backscattering spectroscopy (RBS).

The RBS experiment showed that the (111) surface which adjoins to the (100) surface at an obtuse angle so that the edge between the (111) and the (100) is parallel to the <110> direction of striations on the (100) face is a triply bonded nitrogen-terminating face. The result seems to disagree with that derived from other semiconductor compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wentorf, R.H. Jr, J. Chem. Phys. 26, 956 (1957).CrossRefGoogle Scholar
2. Bundy, F.P., Hall, H.T., Strong, H.M., and Wentorf, R.H. Jr, Nature 176, 51 (1955).CrossRefGoogle Scholar
3. Wentorf, R.H. Jr, J. Chem. Phys. 34, 809 (1961).CrossRefGoogle Scholar
4. DeVries, R.C., Report No. 72 CRD 178 (General Electric Corporation, Schenectady, NY, 1972).Google Scholar
5. Weiss, R.J., Phil. Mag. 29, 1029 (1974).CrossRefGoogle Scholar
6. Kleinman, L., Phillips, J.C., Phys. Rev. 117, 460 (1960).CrossRefGoogle Scholar
7. Coulson, C.A., Redei, L.B., Stocker, D., Proc. R. Soc. Lond. A 270, 357 (1962); L.B. Redei, Proc. R. Soc. Lond., A270, 383 (1962); D. Stocker, Proc. R. Soc. Lond., A270, 397 (1962),Google Scholar
8. Bassani, F. and Yoshimine, M., Phys. Rev. 130, 20 (1963).CrossRefGoogle Scholar
9. Wiff, D.R. and Keown, R.J., J. Chem. Phys. 47, 3113 (1967).CrossRefGoogle Scholar
10. Aleshin, V.G., Smirnov, V.P., and Gantsevich, B.V., Soy. Phys. Solid State 10, 2282 (1969).Google Scholar
11. Hemstreet, L.A. Jr. and Fong, C.Y., Phys. Rev.B6,1464 (1972).CrossRefGoogle Scholar
12. Zunger, A. and Freeman, A.J., Phys. Rev.B17, 2030 (1978).CrossRefGoogle Scholar
13. Hwang, H.C. and Henkel, J., Phys. Rev.B17, 4100 (1978).CrossRefGoogle Scholar
14. Tsay, Y.F., Vaidyanathan, A., and Mitra, S.S., Phys. Rev.B19, 5422 (1979).CrossRefGoogle Scholar
15. Dovesi, R., Pisani, C., Roetti, P., and Dellarole, P., Phys. Rev. B 24, 4170 (1981).CrossRefGoogle Scholar
16. Huang, M.Z. and Ching, W.Y., J. Phys. Chem. Solids, 46, 977 (1985).CrossRefGoogle Scholar
17. Wentzcovitch, R.M., Chang, K.J., and Cohen, M.L., Phys. Rev. B 34, 1071 (1986).CrossRefGoogle Scholar
18. Philipp, H.R. and Taft, E.A., Phys. Rev. 127, 159 (1962).CrossRefGoogle Scholar
19. Chrenko, R.M., Solid State Commun. 14, 511 (1974).CrossRefGoogle Scholar
20. Fomichev, V.A. and Rumsh, M.A., J. Phys. Chem. Solids 29, 1015 (1968).CrossRefGoogle Scholar
21. Miyata, N., Moriki, K., Mishima, O., Fujisawa, M., and Hattori, T., Phys. Rev. B40, 15 December (1989).Google Scholar
22. Wentorf, R.H. Jr, J. Chem. Phys. 36, 1987 (1962).CrossRefGoogle Scholar
23. Mishima, O., Yamaoka, S., and Fukunaga, O., J. Appl. Phys. 61, 2822 (1987).CrossRefGoogle Scholar
24. Mishima, O., Tanaka, J., Yamaoka, S., and Fukunaga, O., Science 238, 181 (1987).CrossRefGoogle Scholar
25. Mishima, O., Era, K., Tanaka, J., and Yamaoka, S., Appl. Phys. Lett. 53, 962 (1988).CrossRefGoogle Scholar
26. Wentorf, R.H. Jr, J. Phys. Chem. 63, 1934 (1959).CrossRefGoogle Scholar
27. Bundy, F.P. and Wentorf, R.H. Jr, J. Chem. Phys. 38, 1144 (1963).CrossRefGoogle Scholar
28. DeVries, R.C. and Fleischer, J.F., Mat. Res. Bull. 4, 433 (1969); J. Cryst. Growth 13/14, 88 (1972).CrossRefGoogle Scholar
29. Endo, T., Fukunaga, O., and Iwata, M., J. Mater. Sci. 14, 1676 (1979).CrossRefGoogle Scholar
30. Endo, T., Fukunaga, O., and Iwata, M., J. Mater. Sci. 16, 2227 (1981).CrossRefGoogle Scholar
31. Iizuka, E., Ger. Offen. DE 3,241,979 (1983).Google Scholar
32. Hall, H.T., Rev. Sci. Instr. 31, 125 (1960).CrossRefGoogle Scholar
33. Bean, V.E., Akimoto, S., Bell, B.M., Block, S., Holzapfel, W.B., Manghnani, M.H., Nicol, M.F., and Stishov, S.M., Physica139 & 140B, 52 (1986).Google Scholar
34. Wentorf, R.H. Jr, J. Phys. Chem. 75, 1833 (1971); H.M. Strong and R.M. Chrenko, J. Phys. Chem., 75, 1838 (1971).CrossRefGoogle Scholar
35. Mishima, O. and Ohsawa, T., presented at the 12th Intl. Conf. on High Pressure Science and Technology, Paderborn, F. R. Germany, 1989.Google Scholar
36. Mishima, O., Yamaoka, S., Fukunaga, O., and Tanaka, J., unpublished; Mishima, O., Yamaoka, S., Fukunaga, O., Tanaka, J. and Era, K., presented at the 1st Intl. Conf. on the New Diamond Science and Technology, Tokyo, Japan, 1988.Google Scholar
37. Aoki, K. and Mishima, O., unpubliched.Google Scholar
38. Era, K. and Mishima, O., this volume.Google Scholar
39. Kobayashi, T., Mishima, O., Iwaki, M., Sakairi, H., and Aono, M., presented at the 9th Intl. Conf. on Ion Beam Analysis (Kingston, Canada, 1989).Google Scholar
40. Kobayashi, T., Mishima, O., Iwaki, M., Sakairi, H., and Aono, M., to be published.Google Scholar
41. Yazu, S., Degawa, J., and Tsuji, K., NEW DIAMOND, No. 15, p. 20 (1989). (in Japanese)Google Scholar
42. Brafman, O., Lengyel, G., and Mitra, S.S., Solid State Commun. 6, 523 (1968).CrossRefGoogle Scholar
43. Sanjurjo, J.A., López-Cruz, E., Yogi, P., and Cardona, M., Phys. Rev. B 28, 4579 (1983).CrossRefGoogle Scholar
44. Barber, H.D. and Heasell, E.L., J. Chem. Solids 26, 1561 (1965).CrossRefGoogle Scholar
45. Tuck, B., J. Mater. Sei. 10, 321 (1975).CrossRefGoogle Scholar
46. Stirland, D. J., Thin Solid Films 31, 139 (1976).CrossRefGoogle Scholar
47. Chu, S.N.G., Jodlauk, C.M., and Johnston, W.D. Jr, J. Electrochem. Soc. 130, 2398 (1983).CrossRefGoogle Scholar
48. Gatos, H.C., J. Electrochem. Soc. 122, 287C (1975).CrossRefGoogle Scholar
49. Holt, D.B., J. Mater. Sci. 23, 1131 (1988).CrossRefGoogle Scholar
50. Coster, D., Knol, K.S., and Prins, J.A., Z. Phys. 63, 345 (1930).CrossRefGoogle Scholar
51. Warekois, E.P. and Metzger, P.H., J. Appl. Phys. 30, 960 (1959).CrossRefGoogle Scholar
52. White, J.G. and Roth, W.C., J. Appl. Phys. 30, 946 (1959).CrossRefGoogle Scholar
53. Zare, R., Cook, W.R., JNR., and Shiozawa, L.R., Nature 189, 217 (1961).CrossRefGoogle Scholar
54. Warekois, E.P., Lavine, M.C., Mariano, A.N., and Gatos, H.C., J. Appl. Phys. 33, 690 (1962).CrossRefGoogle Scholar
55. Mariano, A. N. and Hanneman, R.E., J. Appl. Phys. 34, 384 (1963).CrossRefGoogle Scholar
56. Heiland, G., Kunstmann, P., and Pfister, H., Z. Phys. 176, 33 (1963).CrossRefGoogle Scholar
57. Brafman, O., Alexander, E., Fraenkel, B.S., Kalman, Z.H., and Steinberger, I.T., J. Appl. Phys. 35, 1855 (1964).CrossRefGoogle Scholar
58. Mariano, A.N. and Wolff, G.A., Z. Kristallogr. 126, 244 (1968).CrossRefGoogle Scholar
59. Barns, R.L., Keve, E.T. and Abrahams, S.C., J. Appl. Cryst. 3, 27 (1970).CrossRefGoogle Scholar
60. Burr, K.F. and Woods, J., J. Mater. Sci. 6, 1007 (1971); J. Cryst. Growth 9, 183 (1971).CrossRefGoogle Scholar
61. Hosoya, S. and Fukamachi, T., J. Appl. Cryst. 6, 396 (1973).CrossRefGoogle Scholar
62. Brongersma, H.H. and Mul, P.M., Chem. Phys. Lett. 19, 217 (1973).CrossRefGoogle Scholar
63. Schmidt, W., Pilgermann, B., Kühn, G., and Fischer, P., Kristall und Technik 8, 913 (1973).CrossRefGoogle Scholar
64. Fewster, P.F., Cole, S., Willoughby, A.F., and Brown, M., J. Appl. Phys. 52, 4568 (1981); P.F. Fewster and P.A.C. Whiffin, J. Appl. Phys., 54, 4668 (1983).CrossRefGoogle Scholar
65. Bontemps, A. and Fontenille, J., Phys. Lett. 55A, 373 (1976).CrossRefGoogle Scholar
66. Chami, A.C., Ligeon, E., Danielou, R., and Fontenille, J., Appl. Phys. Lett. 52, 1502 (1988).CrossRefGoogle Scholar
67. Kagamida, M., Kanda, H., Akaishi, M., Nukui, A., Ohsawa, T., and Yamaoka, S., J. Cryst. Growth 94, 261 (1989).CrossRefGoogle Scholar
68. Faust, J.W. Jr and Sager, A., J. Appl. Phys. 31, 331, (1960).CrossRefGoogle Scholar
69. Gatos, H.C. and Lavine, M.C., J. Electrochem. Soc. 107, 433 (1960).CrossRefGoogle Scholar
70. Fukunaga, O., Yamaoka, S., Endo, T., Akaishi, M., and Kanda, H., in High-Pressure Science and Technology, 1, edited by Timmerhaus, K.D. and Borber, M.S. (Plenum, New York, 1979). p. 846.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Cubic Boron Nitride Crystals Grown at High Pressure: PN Junction, Crystallographic Polarity and Some Properties
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Cubic Boron Nitride Crystals Grown at High Pressure: PN Junction, Crystallographic Polarity and Some Properties
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Cubic Boron Nitride Crystals Grown at High Pressure: PN Junction, Crystallographic Polarity and Some Properties
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *