Hostname: page-component-6d856f89d9-jrqft Total loading time: 0 Render date: 2024-07-16T06:32:31.929Z Has data issue: false hasContentIssue false

Crystalline-To-Amorphous Transformation of Intermetallic Compounds in the Zr-Fe-M System Induced by Irradiation

Published online by Cambridge University Press:  16 February 2011

Arthur T. Motta
Affiliation:
Dept. of Nuclear Engineering, Pennsylvania State University, University Park, PA, 16802, USA
Lawrence M. Howe
Affiliation:
AECL Research, Reactor Materials Research Branch, Chalk River Laboratories, Chalk River, Ontario, Canada, KOJ 1J0.
Paul R. Okamoto
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
Get access

Abstract

The binary and ternary intermetallic compounds Zr3Fe, Zr2 Fe, (Zr0.5,Nb0.5)3Fe, Zr3(Fe0.9,Ni0.1) and Zr3(Fe0.5,Ni0.5) were subjected to 900 keV electron irradiation until amorphous to study the change in the dose-to-amorphization with temperature. The critical temperatures were observed to vary with dose rate, and with the type of compound. Hexagonal (Zr0.5,Nb0.5)3Fe had an appreciably lower critical temperature and higher dose to amorphization at low temperature than orthorombic Zr3Fe, whereas other orthorombic Zr3(Fex,NiI-x) compounds were essentially identical in behavior to Zr3Fe. The electron energy dependence of the dose-to-amorphization was studied in Zr3Fe between 250 and 900 keV. The analysis of the results gives displacement energies of EZrd = 26 eV, EFed = 18 eV in the Zr3Fe compound.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bloch, J., Journal of Nuclear Materials, 6 (1962) 203 Google Scholar
2. Howe, L. M. and Rainville, M., Phil. Mag. A 39(2) (1979) 195212.Google Scholar
3. Thomas, G., Mori, H., Fujita, H. and Sinclair, R., Scripta Met. 16 (1982) 589592.Google Scholar
4. Jaouen, C., Solid State Phenomena 23&24 (1992), 123146.Google Scholar
5. Okamoto, P. R. and Meshii, M., in Science of Advanced Materials eds. Wiedersich, H. and Meshii, M. (ASM, 1992), 3398.Google Scholar
6. Nastasi, M. and Mayer, J. W., Materials Science Reports 6 (1991) 1.Google Scholar
7. Motta, A. T. and Lemaignan, C., in “Ordering and Disordering in Alloys” ed. Yavari, A. R., Elsevier, 1992, 255276.Google Scholar
8. Pedraza, D. F., Met. Trans. A Vol. 21A (1990) 18091815.Google Scholar
9. Howe, L.M., in “Intermetallic Compounds: Principle and Practice”, eds. Westbrook, J.H. and Fleischer, R.L., John Wiley and Sons, 1994, in press.Google Scholar
10. Howe, L. M. and Rainville, M., Journal of Nuclear Materials, 68 (1977) 215234.Google Scholar
11. Motta, A.T., Howe, L.M. and Okamoto, P.R., J. of Nucl. Materials, 205 (1993) 258266.Google Scholar
12. Havinga, E.E., Damsma, H. and Hokkeling, P., J.Less-Cornrn. Metals, 27(1972) 169186.Google Scholar
13. Aubertin, F., Gonser, U., Campbell, S.J., and Wagner, H.-G., Z. Metallk. 76 (1985) 237.Google Scholar
14. Woo, O.T. and Carpenter, G., Proc. 12th Int.Congr. El. Micr., 1990, San Francisco Press, 132.Google Scholar
15. Howe, L.M., Rainville, M.H. and Philips, D., MRS Symp.Proc 236 (1993) 461.Google Scholar
16. Motta, A.T., Howe, L.M. and Okamoto, P.R., MRS Symp.Proc. 316 (1994) 265270.Google Scholar
17. Howe, L.M., Philips, D., Motta, A.T., and Okamnoto, P.R., Surf. Coat. and Tech., 66 (1994) 411.Google Scholar
18. Motta, A. T. and Olander, D. R., Acta Metall.et Materialia, 38(11) (1990), 21752185.Google Scholar
19. Shoemaker, J.R. et al. , J.Mat.Res. 6(3) (1991), 473482.Google Scholar
20. Oen, O.S.. ORNL report 4897, 1973.Google Scholar
21. Regnier, P.G., Lam, N.Q. and Westmacott, K.H., J.Nucl.Mater., 115 (1983) 286 Google Scholar
22. Howe, L.M., Forster, J.S., Siegele, R. and Davies, J.A., to be published.Google Scholar