Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-11T14:20:23.461Z Has data issue: false hasContentIssue false

Conventional and Rapid Thermal Annealing of Paramagnetic Oxygen Vacancy Defects (E'1 Centers) in Ion Implanted Amorphous SiO2: A Uni-Molcular Recombination Process

Published online by Cambridge University Press:  25 February 2011

A. Golanski
Affiliation:
Centre National d'Etudes des Télécommunications (CNET - Grenoble) BP. 98, 38243 Meylan, FRANCE
N. Chan Tung
Affiliation:
Centre National d'Etudes des Télécommunications (CNET - Grenoble) BP. 98, 38243 Meylan, FRANCE
J.C. Pfister
Affiliation:
Centre National d'Etudes des Télécommunications (CNET - Grenoble) BP. 98, 38243 Meylan, FRANCE
T. Nicolle
Affiliation:
Centre National d'Etudes des Télécommunications (CNET - Grenoble) BP. 98, 38243 Meylan, FRANCE
Get access

Abstract

The irreversible thermal annealing behaviour of paramagnetic oxygen vacancy defects (E' centers) induced by 40 keV Ne+ and 140 keV Kr+ ion implantation in amorphous SiO2 has been studied by means of electron paramagnetic resonance. The reversible E'l⇆ B2 defect transformation occurring via a hole injection/trapping process under ionising radiation (190 keV H+) is used as a means of distinguishing a reversible modification of the defect charge state from irreversible annealing of oxygen vacancies. Irreversible thermal recovery is shown to occur between 500 and 900°C. Both conventional and tungsten lamp heater annealing results are compared to predictions based on Simpson and Sosin's model for diffusional recombination of spatially correlated Frenkel pairs and to a simple model for unimolecular recombination. The annealing behaviour observed is accounted for assuming a gaussian distribution in activation energy for diffusion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Aitken, J.M. and Young, D.R. J. Appl. Phys. 49, 3386 (1978)Google Scholar
2. Keersmaecker, R.F. De and DiMaria, D.J. J. Appl. Phys. 51, 1085 (1980)Google Scholar
3. Chen, L.I., Pickar, K.A. and Sze, S.M. Solid State Electr. 15, 979 (1972) 360 Google Scholar
4. Harari, E. and Royce, B.S.U. IEEE Trans. Nucl. Scie. NS–20 (6), 288 (1973)Google Scholar
5. Schenck, J.F. in Sixth Annual Reliability Symposium Proceedings, IEEE, New York (1968), p. 31 Google Scholar
6. Collins, D.R. Appl. Phys. Letters 13, 264 (1968)Google Scholar
7. McDonald, B.A. IEEE Trans. Electron Devices ED–17, 871 (1970)Google Scholar
8. Verwey, J.F. Appl. Phys. Letters 15, 270 (1969)CrossRefGoogle Scholar
9. Feigl, J.F., Fowler, W. Beall and Yip, Kwok L. Solid State Comm. 14, 225 (1974)Google Scholar
10. Yip, Kwok L. and Fowler, W. Beall Phys. Rev. B11, 6, 2327 (1975)Google Scholar
11. Griscom, D.L. Jn. of Non-Crystalline Sol. 40, 211 (1980)Google Scholar
12. Griscom, D.L. in Norbert Kreidl Honorary Symposium, Vienna 1984 J. Non-Cryst. Solids - to be publishedGoogle Scholar
13. Devine, R.A.B. and Golanski, A. J. Appl. Phys. 54, 2833 (1983)Google Scholar
14. Golanski, A., Devine, R.A.B. and Oberlin, J.C. J. Appl. Phys. 56, 1572 (1984)Google Scholar
15. Zaininger, K.H. IEEE Trans. Nucl. Sci. NS–13, 6, 237 (1966)Google Scholar
16 Arnold, G.W. Radiat. Eff. 65, 17, (1982)CrossRefGoogle Scholar
17. Cerasimenko, N.N., Tsetlin, G.M. and Vasilev, S.V. Phys. Stat. Sol. (a) 62, K169 (1980)Google Scholar
18. Winterbon, Bruce K. Ion Implantation and Energy Deposition Disbributions IFI/Plenum, New York (1975)CrossRefGoogle Scholar
19. Tung, N. Chan J. Electrochem. Soc. 132, 4, 914 (1985)CrossRefGoogle Scholar
20. EerNisse, E.P. J. Appl. Phys. 45, 167 (1975)CrossRefGoogle Scholar
21 Webb, A.P., Houghton, A.J. and Townsend, P.D. Radiat. Eff. 30, 177 (1974)Google Scholar
22. Devine, R.A.B. and Golanski, A. J. Appl. Phys. 54, 2833 (1983)Google Scholar
23. Devine, R.A.B. and Fiori, C. Influence of ionising radiation on predamaged, Amorphous 5iO2to be published in 3. Appl. Phys.Google Scholar
24. Deal, B.E. and Grove, A.S. J. Appl. Phys. 36, 12, 3370 (1965)Google Scholar
25. Edwards, A.H. and Fowler, W. Bell Phys. Rev. B, 26, 12, 6649 (1982)CrossRefGoogle Scholar
26. Waite, T.R. Phys. Rev. 107, 463 (1957)CrossRefGoogle Scholar
27. Golanski, A. and Nicolle, T. in Induced Defects in Insulators, Edit. Mazzoldi, P., Lea Editions de Physique (France), 225 (1984)Google Scholar
28. Simpson, H.M. and Sosin, A. Radiat. Eff. 3, (1978)Google Scholar
29. Emanuel, N. and Cinotique, D. Knorre Chimique, Ed. Mir, Moscow 1975 Google Scholar
30. Golanski, A., Pfister, J.C. and Nicolle, T. To be published.Google Scholar