Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-20T12:40:37.626Z Has data issue: false hasContentIssue false

Complete Suppression of the Transient Enhanced Diffusion of B Implanted in Preamorphized Si by Interstitial Trapping in a Spatially Separated C-Rich Layer

Published online by Cambridge University Press:  01 February 2011

E. Napolitani
Affiliation:
INFM and Dipartimento di Fisica, via Marzolo 8, 35131 Padova, ITALY.
A. Coati
Affiliation:
INFM and Dipartimento di Fisica, via Marzolo 8, 35131 Padova, ITALY.
D. De Salvador
Affiliation:
INFM and Dipartimento di Fisica, via Marzolo 8, 35131 Padova, ITALY.
A. Carnera
Affiliation:
INFM and Dipartimento di Fisica, via Marzolo 8, 35131 Padova, ITALY.
S. Mirabella
Affiliation:
INFM and Dipartimento di Fisicae Astronomia, Corso Italia 57, 95129 Catania, ITALY.
S. Scalese
Affiliation:
INFM and Dipartimento di Fisicae Astronomia, Corso Italia 57, 95129 Catania, ITALY.
F. Priolo
Affiliation:
INFM and Dipartimento di Fisicae Astronomia, Corso Italia 57, 95129 Catania, ITALY.
Get access

Abstract

A method for completely suppressing the transient enhanced diffusion (TED) of boron implanted in preamorphized silicon is demonstrated. Boron is implanted in a molecular beam epitaxy (MBE) grown silicon sample that has been previously amorphized by silicon implantation. The sample is then annealed in order to epitaxially regrow the amorphous layer and electrically activate the dopant. The back-flow of silicon interstitials released by the preamorphization end-of-range (EOR) damage is completely trapped by a carbon-rich silicon layer interposed by MBE between the damage and the implanted boron. No appreciable TED is observed in the samples up to complete dissolution of the EOR damage, and complete electrical activation is obtained. The method might be considered for the realization of ultra shallow junctions for the far future complementary metal-oxide semiconductor technology nodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. International Technology Roadmap for Semiconductors (Semiconductor Industry Association, Austin, TX, 2000).Google Scholar
2. Privitera, V., Napolitani, E., Priolo, F., Moffatt, S., Magna, A. La, Mannino, G., Carnera, A., Picariello, A., Mater. Sci. Semicond. Process. 2, 35 (1999).Google Scholar
3. Napolitani, E., Carnera, A., Schroer, E., Privitera, V., Priolo, F., Moffatt, S., Appl. Phys. Lett. 75, 1869 (1999).Google Scholar
4. Jones, K. S., Zhang, L. H., Krishnamoorthy, V., Law, M., Simons, D. S., Chi, P., Rubin, L., Elliman, R. G., Appl. Phys. Lett. 68, 2672 (1996).Google Scholar
5. Robertson, L. S., Law, M. E., Jones, K. S., Rubin, L. M., Jackson, J., Chi, P., Simons, D. S., Appl. Phys. Lett. 75, 3844 (1999).Google Scholar
6. Stolk, P. A., Eaglesham, D. J., Gossmann, H. J., Poate, J. M., Appl. Phys. Lett. 66, 1370 (1995).Google Scholar
7. Ban, I., Öztürk, M., Christensen, K., Maher, D. M., Appl. Phys. Lett. 68, 499 (1996).Google Scholar
8. Priolo, F., Mannino, G., Miccichè, M., Privitera, V., Napolitani, E., Carnera, A., Appl. Phys. Lett. 72, 3011 (1998).Google Scholar
9. Strane, J. W., Stein, H. J., Lee, S. R., Picraux, S. T., Watanabe, J. K., Mayer, J. W., J. Appl. Phys. 76, 3656 (1994).Google Scholar
10. Bonafos, C., Mathiot, D., Claverie, A., Appl. Phys. Lett. 83, 3008 (1998).Google Scholar
11. Mirabella, S., Coati, A., Salvador, D. De, Napolitani, E., Mattoni, A., Bisognin, G., Berti, M., Carnera, A., Drigo, A. V., Scalese, S., Pulvirenti, S., Terrasi, A., Priolo, F., Phys. Rev. B 65, 045209 (2002).Google Scholar
12. Fahey, P.M., Griffin, P.B., Plummer, J.D., Rev. Mod. Phys. 61, 289(1989); R. B. Fair, in Impurity Doping Processes in Si, edited by F. F. Y. Wang (North-Holland, Amsterdam, 1981), p. 315; Y. M. Haddara, B. T. Folmer, M. E. Law, T. Buyuklimani, Appl. Phys. Lett. 77, 1976 (2000).Google Scholar