Hostname: page-component-cd4964975-g4d8c Total loading time: 0 Render date: 2023-03-30T22:16:12.590Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Compact All Pass Transmission Filter using Photonic Crystal Slabs

Published online by Cambridge University Press:  15 March 2011

Wonjoo Suh
Affiliation:
Department of Electrical Engineering, Stanford University, Stanford, CA 94305
Shanhui Fan
Affiliation:
Department of Electrical Engineering, Stanford University, Stanford, CA 94305
Get access

Abstract

We show that both the coupled photonic crystal slab and the single photonic crystal slab structure can function as an optical all-pass transmission filter for normally incident light. The filter function is synthesized by designing the spectral properties of guided resonance in the slab. We expect this compact device to be useful for optical communication systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Lenz, G. and Madsen, C. K., J. Lightwave Technol. 17, 1248 (1999).CrossRefGoogle Scholar
[2] Madsen, C.K., Walker, J.A., Ford, J.E., Goossen, K.W., Nielsen, T.N. and Lenz, G., IEEE Photon. Techno. Lett. 12, 651 (2000).CrossRefGoogle Scholar
[3] Kanskar, M., Paddon, P., Pacradouni, V., Morin, R., Busch, A., Young, J. F., Johnson, S. R., Mackenzie, J., and Tiedje, T., Appl. Phys. Lett. 70, 1438 (1997)CrossRefGoogle Scholar
[4] Astratov, V. N., Culshaw, I. S., Stevenson, R. M., Whittaker, D. M., Skolnick, M. S., Krauss, T. F., and Rue, R. M. De La, J. Lightwave Technol. 17, 2050 (1999).CrossRefGoogle Scholar
[5] Fan, S. and Joannopoulos, J. D., Phys. Rev. B, 65, 235112 (2002).CrossRefGoogle Scholar
[6] Boroditskky, M., Vrijen, R., Krauss, T. F., Coccioli, R., Bhat, R., and Yablonovitch, E., J. Lightwave Technol. 17, 2096 (1999).CrossRefGoogle Scholar
[7] Erchak, A., Ripin, D. J., Fan, S., Rakich, P., Joannopoulos, J. D., Ippen, E. P., Petrich, G. S. and Kolodziejski, L. A., Appl. Phys. Lett. 78, 563 (2001).CrossRefGoogle Scholar
[8] Ryu, H. Y., Lee, Y. H., Sellin, R. L., and Bimberg, D., Appl. Phys. Lett. 79, 3573 (2001).CrossRefGoogle Scholar
[9] Meier, M., Mekis, A., Dodabalapur, A., Timko, A. A., Slusher, R. E. and Joannopoulos, J. D., Appl. Phys. Lett. 74, 7 (1999).CrossRefGoogle Scholar
[10] Noda, S., Yokoyama, M., Imada, M., Chutinan, A., and Mochizuki, M., Science, 293, 1123 (2000).CrossRefGoogle Scholar
[11] Wang, S.S. and Magnusson, R., Opt. Lett. 19, 919 (1994).CrossRefGoogle Scholar
[12] Kunz, K. S. and Luebbers, R. J., The Finite-Difference Time-Domain Methods for Electromagnetics (CRC Press, Boca Raton, FL, 1993); A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Methods (Artech House, Boston, 2000).Google Scholar
[13] Suh, W. and Fan, S., Opt. Lett. 28, 1763, (2003)CrossRefGoogle Scholar
[14] Palik, Edward D., Handbook of optical constants of Solids (Academic Press, San Diego, Calif., 1985).Google Scholar
[15] Wang, Z., Fan, S., Phys. Rev. E, 68, 066616, (2003)CrossRefGoogle Scholar