Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-7mfl8 Total loading time: 0.412 Render date: 2021-12-06T22:05:26.661Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

CMOS Compatible Growth of Carbon Nanotubes and Their Application in Field-Effect Transistors

Published online by Cambridge University Press:  22 February 2012

T. Uchino
Affiliation:
Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, Sendai, 982-8577, Japan School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K.
G. N. Ayre
Affiliation:
School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, U.K.
D. C. Smith
Affiliation:
School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, U.K.
J. L. Hutchison
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
C. H. de Groot
Affiliation:
School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K.
P. Ashburn
Affiliation:
School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K.
Get access

Abstract

The metal-catalyst-free growth of carbon nanotubes (CNTs) using chemical vapor deposition and the application in field-effect transistors (FETs) is presented. The CNT growth process used a 3-nm-thick Ge layer on SiO2 that was subsequently annealed to produce Ge nanoparticles. Raman measurements show the presence of radial breathing mode (RBM) peaks and the absence of the disorder induced D-band, indicating single walled CNTs (SWNTs) with a low defect density. The synthesized CNTs are used to fabricate CNTFETs and the best device has a state-of-the-art on/off current ratio of 3×108 and a steep sub-threshold slope of 110 mV/decade.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Appenzeller, J., Proc. IEEE 96, 201 (2008).CrossRefGoogle Scholar
2. Besteman, K., Lee, J., Wiertz, F., Heering, H., and Dekker, C., Nano. Lett. 3, 727 (2003).CrossRefGoogle Scholar
3. Kreupl, F., Graham, A., Duesberg, G., Steinhögl, W., Liebau, M., Unger, E., and Hönlein, W., Microelectronic Engineering 64, 399 (2002).CrossRefGoogle Scholar
4. Haque, M., Teo, K., Rupensinghe, N., Ali, S., Haneef, I., Maeng, S., Park, J., Udrea, F., and Milne, W., Nanotechnology 19, 25607 (2008).CrossRefGoogle Scholar
5. Nikolaev, P., Bronikowski, M., Bradley, R., Rohmund, F., Colbert, D., Smith, K., and Smalley, R., Chem. Phys. Lett. 313, 91 (1999).CrossRefGoogle Scholar
6. Kusunoki, M., Rokkaku, M., and Suzuki, T., Appl. Phys. Lett. 71, 2620 (1997).CrossRefGoogle Scholar
7. Botti, S., Ciardi, R., Terranova, M., Piccirillo, S., Sessa, V., Rossi, M., and Vittori-Antisari, M., Appl. Phys. Lett. 80, 1441 (2002).CrossRefGoogle Scholar
8. Uchino, T., Bourdakos, K. N., de Groot, C. H., Ashburn, P., Kiziroglou, M. E., Dilliway, G. D., and Smith, D. C., Appl. Phys. Lett. 86, 233110 (2005).CrossRefGoogle Scholar
9. Takagi, D., Hibino, H., Suzuki, S., Kobayashi, Y., and Homma, Y., Nano Lett. 7, 2272 (2007).CrossRefGoogle Scholar
10. Uchino, T., Ayre, G., Smith, D. C., Hutchison, J. L., de Groot, C. H., and Ashburn, P., J. Electrochem. Soc. 156, K144 (2009).CrossRefGoogle Scholar
11. Liu, B., Ren, W., Gao, L., Li, S., Pei, S., Liu, C., Jiang, C., and Cheng, H., J. Am. Chem. Soc. 131, 2082 (2009).CrossRefGoogle Scholar
12. Huang, S., Cai, Q., Chen, J., Qian, Y., and Zhang, L., J. Am. Chem. Soc. 131, 2094 (2009).CrossRefGoogle Scholar
13. LeGoues, F., Rosenberg, R., and Meyerson, B., Appl. Phys. Lett. 54, 644 (1989).CrossRefGoogle Scholar
14. Aharonovich, I., Lifshitz, Y., and Tamir, S., Appl. Phys. Lett. 90, 263109 (2007).CrossRefGoogle Scholar
15. Carter, P., Gleeson, B., and Young, D., Oxid. Met. 56, 375 (2001).CrossRefGoogle Scholar
16. Uchino, T., Hutchison, J. L., Ayre, G., Smith, D. C., de Groot, C. H., and Ashburn, P., Jpn. J. Appl. Phys. 50, 04DN02 (2011).CrossRefGoogle Scholar
17. Jorio, A., Fantini, C., Dantas, M., Pimenta, M., Filho, A., Samsonidze, G., Brar, V., Dresselhaus, G., Dresselhaus, M., Swan, A., Unlu, M., Goldberg, B., and Saito, R., Phys. Rev. B 66, 115411 (2002).CrossRefGoogle Scholar
18. Rispal, L. and Schwalke, U., IEEE Electron Device Lett. 29, 1349 (2008).CrossRefGoogle Scholar
19. Chen, Z., Appenzeller, J., Knoch, J., Lin, Y., and Avouris, P., Nano Lett. 5, 1497 (2005).CrossRefGoogle Scholar
20. Javey, A., Guo, J., Wang, Q., Lundstrom, M., and Dai, H., Nature 424, 654 (2003).CrossRefGoogle Scholar
21. Yang, M., Teo, K., Milne, W., and Hasko, D., Appl. Phys. Lett. 87, 253116 (2005).CrossRefGoogle Scholar
22. Guo, J., Datta, S., and Lundstrom, M., IEEE Tran. Electron Devices 51, 172 (2004).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

CMOS Compatible Growth of Carbon Nanotubes and Their Application in Field-Effect Transistors
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

CMOS Compatible Growth of Carbon Nanotubes and Their Application in Field-Effect Transistors
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

CMOS Compatible Growth of Carbon Nanotubes and Their Application in Field-Effect Transistors
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *