Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-2vtd9 Total loading time: 0.241 Render date: 2022-06-24T23:35:13.716Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

A CMOS Compatible Carbon Nanotube Growth Approach

Published online by Cambridge University Press:  23 March 2011

Daire Cott
Affiliation:
IMEC, 75 Kapeldreef, Leuven, Belgium
Masahito Sugiura
Affiliation:
Tokyo Electron Ltd., Technology Development Center, 650 Mitsuzawa, Hosaka-cho, Nirasaki, Yamanashi 407-0192, Japan
Nicolo Chiodarelli
Affiliation:
IMEC, 75 Kapeldreef, Leuven, Belgium Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium;
Kai Arstila
Affiliation:
IMEC, 75 Kapeldreef, Leuven, Belgium
Philipe M. Vereecken
Affiliation:
IMEC, 75 Kapeldreef, Leuven, Belgium Center for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven, Leuven, Belgium;
Bart Vereecke
Affiliation:
IMEC, 75 Kapeldreef, Leuven, Belgium
Sven Van Elshocht
Affiliation:
IMEC, 75 Kapeldreef, Leuven, Belgium
Stefan De Gendt
Affiliation:
IMEC, 75 Kapeldreef, Leuven, Belgium Department.of Chemistry, Katholieke Universiteit Leuven, Leuven, Belgium.
Get access

Abstract

In future technology nodes, 22nm and below, carbon nanotubes (CNTs) may provide a viable alternative to Cu as an interconnect material. CNTs exhibit a current carrying capacity (up to 109 A/cm2), whilst also providing a significantly higher thermal conductivity (SWCNT ~ 5000 WmK) over Copper (106 A/cm2 and ~400WmK). However, exploiting such properties of CNTs in small vias is a challenging endeavor. In reality, to outperform Cu in terms of a reduction in via resistance alone, densities in the order of 1013 CNTs/cm2 are required. At present, conventional thermal CVD of carbon nanotubes is carried out at temperatures far in excess of CMOS temperature limits (400 C). Furthermore, high density CNT bundles are most commonly grown on insulating supports such as Al2O3 and SiO2 as they can effectively stabilize metallic nanoparticles at elevated temperatures but this limits their application in electronic devices. To circumvent these obstacles we employ a remote microwave plasma to grow high density CNTs at a temperature of 400 C on conductive underlayers such as TiN. We identify some critical factors important for high-quality CNTs at low temperatures such as control over the catalyst to underlayer interaction and plasma growth environment while presenting a fully CMOS compatible carbon nanotube synthesis approach

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Harutyunyan, A. R., Chen, G., Paronyan, T. M., Pigos, E. M., Kuznetsov, O. A., Hewaparakrama, K., Kim, S. M., Zakharov, D., Stach, E. A., and Sumanasekera, G. U., Science, 326, 116, (2009)CrossRefGoogle Scholar
2. Romo-Negreira, A., Cott, D.J., Verhulst, A. S., Esconjauregui, S., Chiodarelli, N., Ek-Weis, J., Whelan, C. M., Groeseneken, G., Heyns, M. M., De Gendt, S., Vereecken, P. M., Mater. Res. Soc. Symp. Proc., 1079E, N0601, 2008.Google Scholar
3. Kawabata, Akio, Sato, Shintaro, Nozue, Tatsuhiro, Hyakushima, Takashi, Norimatsu, Masaaki, Mishima, Miho, Murakami, Tomo, Kondo, Daiyu, Asano, Koji, Ohfuti, Mari, Kawarada, Hiroshi, Sakai, Tadashi, Niheiand, Mizuhisa Awano, Yuji, IEEE 987-1-4244-1911-1/08(2008)Google Scholar
4. Armini, S. and Vereecken, P. M., Abstract No 2780, ECS Meeting Abstracts, 902, Vienna, Austria, Oct 49, (2009)Google Scholar
5. Baker, R. T. K., Harris, P. S., Thomas, R. B. and Waite, R. J., J. Catal. 30, 86 (1973)CrossRefGoogle Scholar
6. Merkulov, V. I., Lowndes, D. H., Wei, Y. Y., Eres, G. and Voelkl Appl, E.. Phys. Lett., 76, 24, 12 (2000)Google Scholar
7. Zhang, Guangyu, Mann, David, Zhang, Li, Javey, Ali, Li, Yiming, Yenilmez, Erhan, Wang, Qian, McVittie, James P., Nishi, Yoshio, Gibbons, James, and Dai, Hongjie, PNAS, 102, 45, 1614116145, (2005)Google Scholar
8. Mattevi, Cecilia, Tobias Wirth, Christoph, Hofmann, Stephan, Blume, Raoul, Cantoro, Mirco, Ducati, Caterina, Cepek, Cinzia, Knop-Gericke, Axel, Milne, Stuart, Castellarin Cudia, Carla, Dolafi, Sheema, Goldoni, Andrea, Schloegl, Robert and Robertson, John, J Phys. Chem. C 112, 32, 1220712213 (2008)CrossRefGoogle Scholar
9. Zhong, Guofang, Iwasaki, Takayuki, Robertson, John, and Kawarada, Hiroshi, J Phys Chem B letters, 111, 19071910, 2007 CrossRefGoogle Scholar
10. Chiodarelli, Nicoló, Kellens, Kristof, Cott, Daire J., Peys, Nick, Arstila, Kai, Heyns, Marc, De Gendt, Stefan, Groeseneken, Guido, and Vereecken, Philippe M., J Electrochem. Soc, 157, 10, K211-K217, (2010)CrossRefGoogle Scholar
11. Hiraoka, Tatsuki, Yamada, Takeo, Hata, Kenji, Futaba, Don N., Kurachi, Hiroyuki, Uemura, Sashirou, Yumura, Motoo and Iijima, Sumio, J. Am. Chem. Soc., 128 (41), 1333813339, 2006 CrossRefGoogle Scholar
12. de los Arcos, Teresa, Gunnar Garnier, M., Oelhafen, Peter, Mathys, Daniel, Won Seo, Jin, Domingo, Concepcion, Garcıa-Ramos, Jose Vicente, Sanchez-Cortes, Santiago, Carbon 42 (2004) 187190 CrossRefGoogle Scholar
13. Marlo, M., Milman, V., Phys Rev B 62 2899 2000 CrossRefGoogle Scholar
14. Tyson, W. R. and Miller, W. A., Surf. Sci. 62, 267, 1977 CrossRefGoogle Scholar
15. Łodziana, Z., Topsøe, N.-Y., and Nøskov, J. K., Nature Mater. 3, 289, 2004 CrossRefGoogle Scholar
16. Yan, C.Zhang, Allen, C. S., Bayer, B. C., Hofmann, S., Hickey, B. J., Cott, D., Zhong, G. and Robertson, J., JOURNAL OF APPLIED PHYSICS 108, 024311 (2010)Google Scholar
17. YOKOYAMA, Daisuke, IWASAKI, Takayuki, ISHIMARU, Kentaro, SATO, Shintaro, HYAKUSHIMA, Takashi, NIHEI, Mizuhisa, AWANO, Yuji, and KAWARADA, Hiroshi Jpn. J. Appl. Phys., 47, 4 (2008)Google Scholar
18. Ke, Xiaoxing, Bals, Sara, Cott, Daire, Hantschel, Thomas, Bender, Hugo, and Van, Gustaaf Tendeloo Microsc. Microanal. 16, 210217, 2010 CrossRefGoogle Scholar
19. Chiodarelli, N., Li, Y., Cott, D. J., Mertens, S., Peys, N., Heyns, M., De Gendt, S., Groeseneken, G., Vereecken, P. M., Integration and electrical characterization of carbon nanotube via interconnects, Microelectronic Engineering (2010) - in publicationGoogle Scholar
20. Yamazaki, Yuichi, Katagiri, Masayuki, Sakuma, Naoshi, Suzuki, Mariko, Sato, Shintaro, Nihei, Mizuhisa, Wada, Makoto, Matsunaga, Noriaki, Sakai, Tadashi, and Awano, Yuji, Applied Physics Express 3 (2010) 055002 CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A CMOS Compatible Carbon Nanotube Growth Approach
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A CMOS Compatible Carbon Nanotube Growth Approach
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A CMOS Compatible Carbon Nanotube Growth Approach
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *