Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-rpvk9 Total loading time: 0.173 Render date: 2021-09-25T00:06:11.044Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The Chemical Vapor Deposoitin of Pure Nickel and Nickel Boride Thin Films from Borane Cluster Compounds

Published online by Cambridge University Press:  15 February 2011

Shreyas Kher
Affiliation:
Department of Chemistry and the Center for Molecular Electronics, Syracuse University, Syracuse, New York 13244-4100
James T. Spencer
Affiliation:
Department of Chemistry and the Center for Molecular Electronics, Syracuse University, Syracuse, New York 13244-4100
Get access

Abstract

Several borane cluster compounds, such as pentaborane(9) and their corresponding metal complexes have been investigated in our laboratory for their utility as unique source materials for synthesizing metal/metal boride thin films by MOCVD. In this paper we report the preparation of thin films of nickel boride from the thermal decomposition of nido- pentaborane( 9) in the presence of anhydrous nickel chloride [NiCl2] in the vapor phase. Crystalline nickel boride thin films of controlled composition ranging from 0.1 to several microns have been readily prepared by controlling the temperature and the flow rate of the pentaborane(9) into the reaction chamber. The nickel boride films on GaAs were thermally annealed to form the Ni7B3 phase as hexagonal crystals in a Ni3B matrix. These films have been characterized by AA, AES, EDXA, SEM, XRD and electron diffraction. The phases were determined primarily by X-ray and electron diffraction experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dowben, P. A., Spencer, J. T. and Stauf, G. T., Mat. Sci. Eng. B B2, 297 (1989).CrossRefGoogle Scholar
2. Campbell, A. N., Mullendore, A. W., Hills, C. R. and Vandersande, J. B., J. Matd. Sci. 23, 4049 (1988).CrossRefGoogle Scholar
3. Patterson, R. J., U.S. Patent No. 3,499,799 (1970).Google Scholar
4. Lewandowski, R. S., U.S. Patent No. 4,522,849 (1985).Google Scholar
5. Branovich, L. E., Fitzpatrick, W. B. P., Long, M. L. Jr. U.S. Patent No. 3,692,566 (1972).Google Scholar
6. Mullendore, A. W. and Pope, L. E., Thin Solid Films 267 (1987).Google Scholar
7. Knittl, Z., Optics of Thin Films, (Wiley and Sons, Publ., New York, 1976).Google Scholar
8. Bakonyi, I., J. Magn. Magn. Mat. 73, 171 (1988).CrossRefGoogle Scholar
9. Mutlu, R. H. and Aydinvraz, A., J. Magn. Magn. Mat. 68, 328 (1987).CrossRefGoogle Scholar
10. Lundquist, N., Myers, H. P. and Westin, R., Phil. Mag. 7, 1187 (1962).CrossRefGoogle Scholar
11. Kaul, S. N. and Rosenberg, M., Phys. Rev. B 25, 5863 (1982).CrossRefGoogle Scholar
12. Bakonyi, I., Panissod, P., Durand, J. and Hasegawa, R., J. Non-Cryst. Solids 61/62, 1189 (1984).CrossRefGoogle Scholar
13. Skibo, M. and Greulich, F. A., Thin Solid Films 225 (1984).Google Scholar
14. Zhang, Z., Kim, Y.-G., Dowben, P. A. and Spencer, J. T., Mat. Res. Soc. Symp. Proc. 131, 407 (1989).CrossRefGoogle Scholar
15. (a) Kher, S. and Spencer, J. T., Chem. Mater. in press. (b) J. A. Glass, Jr., S. Kher and J. T. Spencer, Chem. Mater. in press. (c) J. A. Glass, Jr., S. Kher, S. D. Hersee, G. O. Ramseyer and J. T. Spencer, Mat. Res. Soc. Symp. Proc. 204, 397 (1991). (d) J. A. Glass, Jr., S. Kher, Y.-G. Kim, P. A. Dowben and J. T. Spencer, Mat. Res. Soc. Symp. Proc. 204, 439 (1991).Google Scholar
16. Shriver, D. F. and Drezdzon, M. A., The Manipulation of Air-Sensitive Compounds (Wiley-Interscience, New York, 1986).Google Scholar
17. (a) Minyaev, R. M. and Hoffmann, R., Chem. Mater. 3, 547 (1991). (b) J. K. Burdett and E. Canadell, Inorg. Chem. 27, 4437 (1988). (c) P. Mohn and D. G. Pettifor J. Phys. C: Solid State Phys. 21, 2829 (1988). (d) P. Mohn, J. Phys. C: Solid State Phys. 21, 2841 (1988). (e) J. K. Burdett, E. Canadell and G. J. Miller, J. Am. Chem. Soc. 108, 6561 (1986). (f) D. G. Pettifor and R. Podloucky, J. Phys. C: Solid State Phys. 12, 315 (1986). (g) D. R. Armstrong, Theor. Chim. Acta 64, 137 (1983). (h) D. R. Armstrong, R. G. Perkins and V. E. Centina, Theor. Chim. Acta 64, 41 (1983). (i) H. Ihara, M. Hirabayashi and H. Nakagawa, Phys. Rev. B: Solid State Phys. B 16, 726 (1977). (j) P. G. Perkins and A. V. J. Sweeney, J. Less.-Common Met. 42, 165 (1976). (k) S. H. Liv, L. Koop, W. B. England and H. W. Myron, Phys. Rev. B: Solid State Phys. B 11, 3463 (1975).CrossRefGoogle Scholar
18. Samsonov, G. V., Handbook of High-Temperature Materials, No. 2 Properties Index, (Plenum Press, New York, 1964).Google Scholar
19. (a) Thompson, R., Prog. Boron Chem. 2, 173 (1970). (b) P. Schwarzkopf, R. Kieffer, W. Leszynski and K. Benesovsky, Refractory Hard Metals, Borides, Carbides, Nitrides, and Silicides; (MacMillan, New York, 1953). (c) B. Aronsson, T. Lundstrom, S. Rundqvist, Borides, Silicides and Phosphides, (Wiley, New York, 1965). (d) V. I. Matkovick, Boron and Refractory Borides, (Springer-Verlag, New York, 1977). (e) G. V. Samsonov, Y. M. Goryachev and B. A. Kovenskaya, J. Less.-Common Met. 42, 147 (1976). (f) W. N. Lipscomb, J. Less.-Common Met. E2, 1 (1981). (g) J. Etourneau and P. Hagenmuller, Philos, Mag. 52, 589 (1985).Google Scholar
20. (a) Punge-Witteler, B. and U. Koster Mat. Sci. Eng. 92, 343 (1988). (b) A. Y. Petrov, V.V. Kovalev and M.M. Markus, Dokl. Akad. Nauk SSSR 198, 389 (1971). (c) F. Machizaud, F.-A. Kuhnast and J. Flechon J. Physique 97 (1981). (d) F. A. Kuhnast, F. Machizaud, R. Vangelisti and J. Flechon J. Microsc. Spectrosc. Electron 4, 55 (1979). (e) F. Machizaud, Personal Communication.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Chemical Vapor Deposoitin of Pure Nickel and Nickel Boride Thin Films from Borane Cluster Compounds
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The Chemical Vapor Deposoitin of Pure Nickel and Nickel Boride Thin Films from Borane Cluster Compounds
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The Chemical Vapor Deposoitin of Pure Nickel and Nickel Boride Thin Films from Borane Cluster Compounds
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *