Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-28T21:29:49.172Z Has data issue: false hasContentIssue false

Charactervation of Adhesion in Thin-Film Materials by the Blister Test

Published online by Cambridge University Press:  15 February 2011

Y Z. Chu
Affiliation:
Department of Chemical Engineering and Applied Chemistry, Columbia University, New York, NY 10027
H. S. Jeong
Affiliation:
Department of Electrical Engineering, Columbia University, New York, NY 10027.
R. C. White
Affiliation:
Department of Electrical Engineering, Columbia University, New York, NY 10027.
C. J. Durning
Affiliation:
Department of Chemical Engineering and Applied Chemistry, Columbia University, New York, NY 10027
Get access

Abstract

In this work a blister test is applied to study the adhesion of thin films to substrates. In the blister test one injects a fluid at constant rate at the interface between the substrate and an overlayer to create a “blister”. The fluid pressure is measured as function of time. An analysis gives a reliable way of calculating the adhesion energy Ga. from the time-dependent pressure data. The method was applied to a variety of systems including polymer/polymer, polymer/silicon and polymer/metal interfaces. The results show that the test is very sensitive and is able to determine small adhesion energies inaccessible in conventional peel tests. This work demonstrates that the blister test provides a means of relating the mechanical strength of an interface to its microscopic dynamic and structural features.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Foster, K. L. and Wool, R. P., Macromolecules, 24. 1397 (1991).CrossRefGoogle Scholar
2. Chou, N. J. and Tang, C. H., J. Vac. Sci. Technol., A2, 751 (1984).CrossRefGoogle Scholar
3. Ho, P.S., Hahn, P. O., Bartha, J. W., Rubloff, G. W., LeGoues, F. K. and Silverman, B. D., J. Vac. Sci. Technol., A3 739 (1985).CrossRefGoogle Scholar
4. Bartha, J. W., Hahn, P. O., LeGoues, F., and Ho, P. S., J. Vac. Sci. Technol.,A3, 1390 (1985).CrossRefGoogle Scholar
5. Atanasoska, Lj., Anderson, S. G., Meyer, H. M., III, Lin, Z. and Weaver, J. H., J. Vac. Sci. Technol., A5., 3325 (1987).CrossRefGoogle Scholar
6. Meyer, H. M., III, Anderson, S. G., Atanasoska, Lj and Weaver, J. H., J. Vac. Sci. Technol., A6, 30 (1988).CrossRefGoogle Scholar
7. Buchwalter, L. P. and Greenblatt, J., J. Adhesion, 19, 257 (1986).CrossRefGoogle Scholar
8. DiNardo, N.J., in Metalllized Plastics 1: Fundamental and Applied Aspects edited by Mittal, K. L. and Susko, J. R. (Plenum, New York, 1989), pp.137170.CrossRefGoogle Scholar
9. Reiter, G. and Steiner, U., J. Phys. France, 1, 659 (1991).CrossRefGoogle Scholar
10. Dannenberg, H., J. Appl. Polym. Sci., 5., 125 (1961).CrossRefGoogle Scholar
11. Briscoe, B. J. and Panesar, S. S., Proc. Roy. Soc. Lond., A433. 23 (1991).Google Scholar
12. Chu, Y.Z. and Durning, C. J., J. Appl. Polym. Sci., to appear 1992.Google Scholar
13. Gent, A. and Lewandowsid, L., J. Appl. Polym. Sci., 33, 1567 (1987).CrossRefGoogle Scholar
14. Chu, Y.Z. and Duming, C. J., paper presented at American Chemical Society National Meeting, UERP Symposium, August 25–30, 1991, New York.Google Scholar
15. Chu, Y. Z., Jeong, H. S., White, R. C. and Durming, C. J., to appear in Metallized Plastics 3: Fundamental and Apied Asects. edited by Mittal, K. L. (Plenum, New York, 1992).Google Scholar
16. de Gennes, P. G., J. Phys., France, 50, 2551 (1989)..Google Scholar
17. Rothman, L. B., J. Electrochem. Soc., 127, 2216 (1980).CrossRefGoogle Scholar
18. Kim, K. S. and Kim, J., Trans ASME J. Eng. Mater. Technol., 110, 266 (1988).CrossRefGoogle Scholar