Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-lfkwv Total loading time: 0.172 Render date: 2021-05-08T05:24:04.533Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Characterization on the Viscoelastic Property of PDMS in the Frequency Domain

Published online by Cambridge University Press:  28 January 2011

Ping Du
Affiliation:
Department of Mechanical Engineering, Boston University, Boston MA 02215, U.S.A.
I-Kuan Lin
Affiliation:
Department of Mechanical Engineering, Boston University, Boston MA 02215, U.S.A. Global Science & Technology, Greenbelt, MD 20770, U.S.A.
Hongbing Lu
Affiliation:
Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, U.S.A.
Xi lin
Affiliation:
Department of Mechanical Engineering, Boston University, Boston MA 02215, U.S.A.
Xin Zhang
Affiliation:
Department of Mechanical Engineering, Boston University, Boston MA 02215, U.S.A.
Get access

Abstract

A key issue in using Polydimethylsiloxane (PDMS) based micropillars as cellular force transducers is obtaining an accurate characterization of mechanical properties. The Young’s modulus of PDMS has been extended from a constant in the ideal elastic case to a time-dependent function in the viscoelastic case. However, the frequency domain information is of more practical interest in interpreting the complex cell contraction behavior. In this paper, we reevaluated the Young’s relaxation modulus in the time domain by using more robust fitting algorithms than previous reports, and investigated the storage and loss moduli in the frequency domain using the Fourier transform technique. With the use of the frequency domain modulus and the deflection of micropillars in the Fourier series, the force calculation can be much simplified by converting a convolution in the time domain to a multiplication in the frequency domain.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Tan, J. L., Tien, J., Pirone, D. M., Gray, D. S., Bhadriraju, K. and Chen, C. S., Proc. Natl. Acad. Sci. USA. 100, 14841489 (2003).CrossRefGoogle Scholar
2. Zhao, Y. and Zhang, X., 18th IEEE MEMS, Miami Beach, FL, 398404 (2005).Google Scholar
3. Zheng, X. and Zhang, X., J. Micromech. Microeng. 18, 125006 (2008).CrossRefGoogle Scholar
4. Xiang, Y. and LaVan, D. A., Appl. Phys. Lett. 90, 133901 (2007).CrossRefGoogle Scholar
5. Lin, I. K., Ou, K. S., Liao, Y. M., Liu, Y., Chen, K. S. and Zhang, X., J. Microelectromech. Syst. 18, 10871099 (2009).Google Scholar
6. Lin, I. K., Liao, Y. M., Liu, Y., Ou, K. S., Chen, K. S. and Zhang, X., Appl. Phys. Lett. 93, 251907 (2008).CrossRefGoogle Scholar
7. Du, P., Lin, I. K., Lu, H. and Zhang, X., J. Micromech. Microeng. 20, 095016 (2010).CrossRefGoogle Scholar
8. Huang, G., Wang, B. and Lu, H., Mech. Time-Depend. Mater. 8, 345364 (2004).CrossRefGoogle Scholar
9. White, C. C., Vanlandingham, M. R., Drzal, P. L., Chang, N. K. and Chang, S. H., J. Polym. Sci. Pt. B-Polym. Phys. 43, 18121824 (2005).CrossRefGoogle Scholar
10. Herbert, E. G., Oliver, W. C. and Pharr, G. M., J. Phys. D Appl. Phys. 41, 074021 (2008).CrossRefGoogle Scholar
11. Herbert, E. G., Oliver, W. C., Lumsdaine, A. and Pharr, G. M., J. Mater. Res. 24, 626637 (2009).CrossRefGoogle Scholar
12. Le Rouzic, J., Delobelle, P., Vairac, P. and Cretin, B., Eur. Phys. J.-Appl. Phys. 48, 14 (2009).CrossRefGoogle Scholar
13. Wu, C. L., Lin, H. C., Hsu, J. S., Yip, M. C. and Fang, W. L., Thin Solid Films 517, 48954901 (2009).CrossRefGoogle Scholar
14. Brinson, H. F. and Brinson, L. C., Polymer Engineering Science and Viscoelasticity, An Introduction. (Springer, New York, 2008).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Characterization on the Viscoelastic Property of PDMS in the Frequency Domain
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Characterization on the Viscoelastic Property of PDMS in the Frequency Domain
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Characterization on the Viscoelastic Property of PDMS in the Frequency Domain
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *