Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-ssw5r Total loading time: 0.367 Render date: 2022-08-13T06:37:02.249Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Characterization of Point Defect Generation, Migration and Coalescence in Irradiated SiC by Atomistic Simulation

Published online by Cambridge University Press:  01 February 2011

David Farrell
Affiliation:
d-farrell2@northwestern.edu, Northwestern Univiersity, Mechanical Engineering, 2145 Sheridan Rd Suite B224, Evanston, IL, 60208, United States
Noam Bernstein
Affiliation:
noam.bernstein@nrl.navy.mil, Naval Research Laboratory, Center for Computational Materials Science, Washington, DC, 20375, United States
Wing Kam Liu
Affiliation:
w-liu@northwestern.edu, Northwestern Univiersity, Mechanical Engineering, 2145 Sheridan Rd Suite B224, Evanston, IL, 60208, United States
Get access

Abstract

Renewed interest in nuclear power in the United States has prompted investigations into new reactor designs, resulting in a need to gain a greater understanding of the properties of the materials which are proposed for use in next generation nuclear reactors. This presentation will focus on preliminary results of large-scale empirical potential atomistic studies into the generation of point defect clusters in 3C SiC by particle irradiation and the evolution from point defect clusters to ‘voids’ on the atomic scale. Our working definition of ‘void’ will be explained in the context of small length-scale simulations. The determination of interstitial and vacancy diffusivities for the empirical potential employed and its impact on defect coalescence will be discussed. The characterization of initial damage states for given irradiation conditions will be presented and compared to previous work on ceramics and ceramic-composites.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Characterization of Point Defect Generation, Migration and Coalescence in Irradiated SiC by Atomistic Simulation
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Characterization of Point Defect Generation, Migration and Coalescence in Irradiated SiC by Atomistic Simulation
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Characterization of Point Defect Generation, Migration and Coalescence in Irradiated SiC by Atomistic Simulation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *