Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-ln9sz Total loading time: 0.621 Render date: 2021-09-26T01:58:27.841Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Characterization of Electron-Induced Defects in Cu (In, Ga) Se2 Thin Films by Photoluminescence

Published online by Cambridge University Press:  07 May 2015

Shirou Kawakita
Affiliation:
Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki, 305-8505 Japan
Mitsuru Imaizumi
Affiliation:
Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki, 305-8505 Japan
Shogo Ishizuka
Affiliation:
Insititute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8568 Japan
Hajime Shibata
Affiliation:
Insititute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8568 Japan
Shigeru Niki
Affiliation:
Insititute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8568 Japan
Shuichi Okuda
Affiliation:
Osaka Prefecture University (OPU), Sakai, Osaka, 599-8570 Japan
Hiroaki Kusawake
Affiliation:
Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki, 305-8505 Japan
Get access

Abstract

CIGS thin films were irradiated with 100 or 250 keV electrons to reveal the radiation defect by analyzing PL measurement. The PL intensity decreased due to non-radiative recombination defects induced by electron irradiation. Furthermore, the intensity 0.8 eV peak of the PL spectrum was observed from CIGS films irradiated with 250 eV electrons and is said to correspond to In-antisite defects in CIGS materials. The defects can usually change into InCu-VCu complex defects combined with VCu, since the formation energy of the complex defect is lower than that of each defect. Cu interstitial defects induced by 250 keV electron irradiation would diffuse to VCu of the complex defect, whereupon the complex defect might become an In-antisite defect due to 250 keV electron irradiation.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hisamatsu, T., Aburaya, T. and Matsuda, S., 2nd World Conference on Photovoltaic Energy Conversion, 3568 (1998).
Guillemoles, J. F., Kronik, L., Cahen, D., Rau, U., Jasenek, A. and Schock, H. W., J. Phys. Chem. B. 104, 4849 (2000).CrossRef
Kawakita, S., Imaizumi, M., Ishizuka, S., Niki, S., Okuda, S. and Kusawake, H.. Thin Solid Films 535, 353 (2013).CrossRef
Kawakita, S., Imaizumi, M., Ishizuka, S., Shibata, H., Niki, S., Okuda, S. and Kusawake, H., J. Jpn. Apply. Phys. 53, 05FW08 (2014).
Igalson, M., Zabierowski, P., Przado, D., Urbaniak, A., Edoff, M. and Shafarman, W. N., Sol. Energy Mater. Sol. Cells 93, 1290 (2009).CrossRef
Kawakita, S., Imaizumi, M., Ishizuka, S., Shibata, H., Niki, S., Okuda, S. and Kusawake, H., Thin Solid Films, In press, corrected proof, doi:10.1016/j.tsf.2014.08.050 (2014).Google Scholar
Zott, S., Leo, K., Ruckh, M. and Schock, H. –W., J. Appl. Phys. 82, 356 (1997)CrossRef
Ishizuka, S., Sakurai, K., Yamada, A., Matsubara, K., Fons, P., Iwata, K., Nakamura, S., Kimura, Y., Baba, T., Nakanishi, H., Kojima, T. and Niki, S., Sol. Energy Mater. Sol. Cells 87, 541 (2005).CrossRef
Ishizuka, S., Yamada, A., Islam, M. M., Shibata, H., Fons, P., Sakurai, T., Akimoto, K. and Niki, S., J. Appl. Phys. 106, 034908 (2009).CrossRef
Park, M., Ahn, S., Yun, J. H., Gwak, J., Cho, A., Ahn, S. K., Shin, K., Nam, D., Cheong, H. and Yoon, K., J. Alloys and Comp. 513, 68 (2012).CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Characterization of Electron-Induced Defects in Cu (In, Ga) Se2 Thin Films by Photoluminescence
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Characterization of Electron-Induced Defects in Cu (In, Ga) Se2 Thin Films by Photoluminescence
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Characterization of Electron-Induced Defects in Cu (In, Ga) Se2 Thin Films by Photoluminescence
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *