Skip to main content Accessibility help
×
Home
Hostname: page-component-6f6fcd54b-7967c Total loading time: 0.169 Render date: 2021-05-11T10:11:36.697Z Has data issue: true Feature Flags: {}

Characterization of CDTE Films, Useful In All Thin-Films Solar Cells. I. CD Vacancies And Photoluminescence Spectra

Published online by Cambridge University Press:  26 February 2011

J. M. Figueroa
Affiliation:
Departamento de Fisica. Centro de Investigacin del IPN. Apartado Postal 14–740. 07000 Mexico D.F. MEXICO. Escuela Superior de Fisica y Matematicas del IPN. Apartado Postal 75–702. 07738 Mexico D.F. MEXICO.
C. Vazquez-Lopez
Affiliation:
Instituto de Ciencias. Universidad Autonoma de Puebla. 72570 Puebla, Pue. MEXICO.
F. Sanchez-Sinencio
Affiliation:
Departamento de Fisica. Centro de Investigacin del IPN. Apartado Postal 14–740. 07000 Mexico D.F. MEXICO.
J. G. Mendoza-Alvarez
Affiliation:
Departamento de Fisica. Centro de Investigacin del IPN. Apartado Postal 14–740. 07000 Mexico D.F. MEXICO. Instituto de Ciencias. Universidad Autonoma de Puebla. 72570 Puebla, Pue. MEXICO.
O. Zelaya
Affiliation:
Departamento de Fisica. Centro de Investigacin del IPN. Apartado Postal 14–740. 07000 Mexico D.F. MEXICO.
Get access

Abstract

Polycrystalline CdTe films were grown by a hot-wall-close space vapor transport technique. In-doped CdTe films were grown onto conductive tin-oxide glass substrates. In order to produce Cd-vacancies, the films were photocorroded using the electrochemical arrangement reported by C. Vazquez-Lopez et al [4]. CdTe films were photocorroted during different times of illumination. Photoluminescence spectra of these films showed that the peak at 1.55eV grows with the photocorrosion time. Our results indicate that the 1.55 peak is associated to Cd-vacancies which are produced during the photo-corrosion process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Fulop, G., Doty, M., Meyers, P., Betz, J. and Liu, C.H. Appl. Phys. Lett. 40, 327 (1982).CrossRefGoogle Scholar
2. Tyan, Y.S. and Perez-Aibuerne, E.A., Proc, of the 16th IEEE Photovoltaic Specialists Conference (IEEE, New York, 1983), p.794.Google Scholar
3. Werthen, J.G., Fahrenbruch, A.L., Bube, R.H. and Zesch, J.C. J. Appl. Phys. 54, 2750 (1983).CrossRefGoogle Scholar
4. Vazquez-Lopez, C., Sanchez-Sinencio, F., Helman, J.S., Pen¯, J.L., Lastras-Martinez, A., Raccah, Paul M., Robert Tri boulet J. Appl. Phys. 50, 5391 (1979).CrossRefGoogle Scholar
5. Menezes, Cornelius A., Sanchez-Sinencio, F., Sosa E, A., Vazquez-Lopez, C. Solar Energy Materials 11, 401 (1985).CrossRefGoogle Scholar
6. Menezes, Cornelius, Fortmann, Charles and Casey, Sean J.Electrochem. Soc. 132, 709 (1985).CrossRefGoogle Scholar
7. Ellis, A.B., Kaiser, S.W. and Wrighton, M.S. J. Am. Chem. Soc. 98, 6418 (1976).CrossRefGoogle Scholar
8. Tenne, R. and Hodes, G. Appl. Phys. Lett. 37, 428 (1980).CrossRefGoogle Scholar
9. Muller, N. and Tenne, R. Appl. Phys. Lett. 39, 283 (1981).CrossRefGoogle Scholar
10. Saldana, Xochitl I., Vazquez-Lopez, C., Zehe, A., Navarro, H., Triboulet, R. Appl. Phys. Lett. 39, 433 (1981).CrossRefGoogle Scholar
11. Cardenas, M., Mendoza-Alvarez, J.G., Sanchez-Sinencio, F., Zelaya, O., Menezes, C., J. Appl. Phys. 56, 2977 (1984).CrossRefGoogle Scholar
12. Zanio, K.R., Semiconductor and Semimetals, Vol. 13 (CdTe). (Academic Press, New York, 1978).Google Scholar
13. Myers, T.H, Schetzina, J.F., Edwards, S.T. and Schreiner, A.F. J. Appl. Phys. 54, 4232 (1983).CrossRefGoogle Scholar
14. Norris, C.B., Zanio, K.R. J. Appl. Phys. 53, 6347 (1982).CrossRefGoogle Scholar
15. Bryant, F.J., Totterdell, H.J. and Hagston, W.E. J.Phys. C 4, 641 (1971).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Characterization of CDTE Films, Useful In All Thin-Films Solar Cells. I. CD Vacancies And Photoluminescence Spectra
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Characterization of CDTE Films, Useful In All Thin-Films Solar Cells. I. CD Vacancies And Photoluminescence Spectra
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Characterization of CDTE Films, Useful In All Thin-Films Solar Cells. I. CD Vacancies And Photoluminescence Spectra
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *