Hostname: page-component-cc8bf7c57-7lvjp Total loading time: 0 Render date: 2024-12-11T22:21:27.549Z Has data issue: false hasContentIssue false

Characterization of Atomic Layer Deposited Ultrathin HfO2 Film as a Diffusion Barrier in Cu Metallization

Published online by Cambridge University Press:  01 February 2011

Prodyut Majumder
Affiliation:
pmajum2@uic.edu, University of Illinois at Chicago, Department of Chemical Engineering, 810 S Clinton St, Chicago, IL, 60607, United States, 312-996-8373, 312-413-4700
Rajesh Katamreddy
Affiliation:
rkatam1@uic.edu, University of Illinois at Chicago, Department of Chemical Engineering, 810 S Clinton St, Chicago, IL, 60607, United States
Christos G Takoudis
Affiliation:
takoudis@uic.edu, University of Illinois at Chicago, Department of Chemical Engineering, 810 S Clinton St, Chicago, IL, 60607, United States
Get access

Abstract

Thermally stable, amorphous HfO2 thin films deposited using atomic layer deposition have been studied as a diffusion barrier between Cu and the Si substrate. 4 nm thick as-deposited HfO2 films deposited on Si are characterized with X-ray photoelectron spectroscopy. Cu/HfO2/<Si> samples are annealed at different temperatures, starting from 500 °C, in the presence of N2 atmosphere for 5 min and characterized using sheet resistance, X-ray diffraction and scanning electron microscopy. Ultrathin HfO2 films are found to be effective diffusion barrier between Cu and Si with a high failure temperature of about 750 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Stolt, L. and F. M. D’Heurle, Thin Solid Films, vol. 189, pp. 269–74, 1990.Google Scholar
[2] Chang, C.-A., J. Appl. Phys, vol. 67, pp. 566–69, 1990.Google Scholar
[3] Nicolet, M. A., Thin Solid Films, vol. 52, pp. 415–43, 1978.Google Scholar
[4] Shacham-Diamand, Y., Journal of Electronic Materials, vol. 30, pp. 336344, 2001.Google Scholar
[5] “International Technology Roadmap for Semiconductors (ITRS) edition (http://www.itrs.net/Links/2005ITRS/Interconnect2005.pdf),” 2005.Google Scholar
[6] M., M. a. L. Ritala, “Handbook of Thin Film Materials,” Nalwa, H. S., Editor, Vol. 1, Chap. 2, Academic Press, San Diego, 2001.Google Scholar
[7] Wang, S.-Q., MRS Bulletin, vol. 19, pp. 3040, 1994.Google Scholar
[8] Kaloyeros, A. E. and Eisenbraun, E., Annual Review of Materials Science, vol. 30, pp. 363385, 2000.Google Scholar
[9] Yoon, D.-S., Baik, H. K., and Lee, S.-M., Journal of Applied Physics, vol. 83, pp. 13331336, 1998.Google Scholar
[10] Nam, K. T., Datta, A., Kim, S.-H., and Kim, K.-B., Applied Physics Letters, vol. 79, pp. 2549–51, 2001.Google Scholar
[11] Kim, S.-H., Nam, K. T., Datta, A., Kim, H.-M., Kim, K.-B., and Kang, D.-H., Journal of Vacuum Science & Technology B, vol. 21, pp. 804813, 2003.Google Scholar
[12] Liu, C. M., Liu, W. L., Chen, W. J., Hsieh, S. H., Tsai, T. K., and Yang, L. C., Journal of the Electrochemical Society, vol. 152, pp. G234–G239, 2005.Google Scholar
[13] Alen, P., Vehkamaki, M., Ritala, M., and Leskela, M., Journal of the Electrochemical Society, vol. 153, pp. G304–G308, 2006.Google Scholar
[14] Katamreddy, R., Inman, R., Jursich, G., Soulet, A., and Takoudis, C., Journal of the Electrochemical Society, vol. 153, pp. C701–C706, 2006.Google Scholar
[15] Inman, R. and Jursich, G., Future Fab International, vol. 21, pp. 117120, 2007.Google Scholar
[16] Renault, O., Samour, D., Damlencourt, J. F., Blin, D., Martin, F., Marthon, S., Barrett, N. T., and Besson, P., Applied Physics Letters, vol. 81, pp. 36273629, 2002.Google Scholar
[17] Song, S., Liu, Y., Mao, D., Ling, H., and Li, M., Thin Solid Films, vol. 476, pp. 142147, 2005.Google Scholar