Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-04T00:59:47.263Z Has data issue: false hasContentIssue false

Characterization and Applications of Modulated Optical Nanoprobes (MOONs)

Published online by Cambridge University Press:  01 February 2011

Jeffrey N. Anker
Affiliation:
University of Michigan Chemistry Department, Ann Arbor, Michigan 48109–1055.
Caleb J. Behrend
Affiliation:
University of Michigan Chemistry Department, Ann Arbor, Michigan 48109–1055.
Brandon H. McNaughton
Affiliation:
University of Michigan Chemistry Department, Ann Arbor, Michigan 48109–1055.
Teresa Gail Roberts
Affiliation:
University of Michigan Chemistry Department, Ann Arbor, Michigan 48109–1055.
Murphy Brasuel
Affiliation:
Colarado College Chemistry Department, Colorado Springs, Colorado 80903.
Martin A. Philbert
Affiliation:
University of Michigan School of Public Health, Ann Arbor, Michigan 48109.
Raoul Kopelman
Affiliation:
University of Michigan Chemistry Department, Ann Arbor, Michigan 48109–1055.
Get access

Abstract

Modulated optical nanoprobes (MOONs) are microscopic (spherical and aspherical) particles designed to emit different fluxes of light in a manner that depends on particle orientation. When particle orientation is controlled remotely using magnetic fields (MagMOONs) it allows modulation of fluorescence intensity in any selected pattern including square and sinusoidal waves. The broad range of sizes over which MOONs can be prepared allows them to be tailored to applications from intracellular sensors using submicron MOONs to immunoassays using larger MOONs (1–10μm). In the absence of external fields, or material that responds to external fields, the particles tumble erratically due to Brownian thermal forces. These erratic changes in orientation cause the MOONs to blink. The temporal pattern of blinking contains information about the local rheological environment and any forces and torques acting on the MOONs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Monson, E. et al., Biomedical Photonics Handbook, Edited by Vo-Dinh, T. (CRC Press, 2003).Google Scholar
2. Clark, H. A. et al., Mikrochimica Acta 131(1–2), 121 (1999).Google Scholar
3. Aylott, J. W., Analyst 128(4), 309 (2003).Google Scholar
4. Xu, H. et al., Analytical Chemistry 73(17), 4124 (2001).Google Scholar
5. Xu, H., Aylott, J. W., and Kopelman, R., Analyst 127(11), 1471 (2002).Google Scholar
6. Brasuel, M. et al., Analytical Chemistry 73(10), 2221 (2001).Google Scholar
7. Xu, H. et al., Journal of Biomedical Materials Research Part a 66A(4), 870 (2003).Google Scholar
8. Anker, J. N., Behrend, C., and Kopelman, R., Journal of Applied Physics 93(10), 6698 (2003).Google Scholar
9. Anker, J. N. and Kopelman, R., Applied Physics Letters 82(7), 1102 (2003).Google Scholar
10. Behrend, C.J., Anker, J.N., and Kopelman, R., Applied Physics Letters (in press).Google Scholar
11. Anker, J. N., Behrend, C., and Kopelman, R., (In Preparation).Google Scholar
12. Anker, J. N., Horvath, T. D., and Kopelman, R.,, European Cells and Materials 3 (Suppl. 2), 95 (2002).Google Scholar
13. Wang, J. F. et al., Science 293(5534), 1455 (2001).Google Scholar
14. Clark, H. A. et al., Analytical Chemistry 71(21), 4831 (1999).Google Scholar
15. Xu, H., Aylott, J., and Kopelman, R., Abstracts of Papers of the American Chemical Society 219, U99 (2000).Google Scholar
16. Sasaki, K. et al., Chemistry Letters (2), 141 (1996).Google Scholar
17. Born, M. and Wolf, E., Principles of Optics--6th Ed, Chapter 13 (Cambridge University Press, New York, NY, 1980).Google Scholar
18. Takei, H. and Shimizu, N., Langmuir 13(7), 1865 (1997).Google Scholar
19. Nakahama, K., Kawaguchi, H., and Fujimoto, K., Langmuir 16(21), 7882 (2000).Google Scholar
20. Himmelhaus, M. and Takei, H., Sensors and Actuators B-Chemical 63(1–2), 24 (2000).Google Scholar
21. Fujimoto, K. at al., Langmuir 15(13), 4630 (1999).Google Scholar
22. Cameron, L. A. et al., Proceedings of the National Academy of Sciences of the United States of America 96(9), 4908 (1999).Google Scholar
23. Lu, Y. et al., Journal of the American Chemical Society 125(42), 12724 (2003).Google Scholar
24. Crowley, J. M., Sheridon, N. K., and Romano, L., Journal of Electrostatics 55(3–4), 247 (2002).Google Scholar
25. Choi, J. et al., Nano Letters 3(8), 995 (2003).Google Scholar
26. Brown, R., Edinburgh Phil. Journal 5, 358 (1828).Google Scholar
27. Brown, R., Edinburgh J. Science 1, 314 (1829).Google Scholar
28. Einstein, A., Investigations on the Theory of the Brownian Movement (Dover, New York, N. Y., 1956).Google Scholar
29. Perrin, J, Brownian Movement and Molecular Reality (Taylor and Francis, 1910).Google Scholar
30. Koenderink, G. H., Rotational and Translational Diffusion in Colloidal Mixtures (Cip-Gegevens Koninklikjke Bibliotheek, Dan Haag, Netherlands, 2003).Google Scholar
31. Valberg, P. A. and Butler, J. P., Biophysical Journal 52(4), 537 (1987).Google Scholar
32. Tomishige, M., Sako, Y., and Kusumi, A., Journal of Cell Biology 142(4), 989 (1998).Google Scholar
33. Mackintosh, F. C. and Schmidt, C. F., Current Opinion in Colloid & Interface Science 4(4), 300 (1999).Google Scholar
34. Gisler, T. and Weitz, D. A., Current Opinion in Colloid & Interface Science 3(6), 586 (1998).Google Scholar
35. Crick, F. H. C. and Hughes, A. F. W. (1950), Vol. 37.Google Scholar
36. Luby-Phelps, K., Vol. 192, pp. 189221.Google Scholar
37. Valberg, P. A. and Feldman, H. A., Biophysical Journal 52(4), 551 (1987).Google Scholar
38. Janson, L. W., Ragsdale, K., and Lubyphelps, K., Biophysical Journal 71(3), 1228 (1996).Google Scholar
39. Nicolas, Y. et al., Food Hydrocolloids 17, 907 (2003).Google Scholar
40. Breedveld, V. and Pine, D. J., Journal of Materials Science, 38, 4461 (2003).Google Scholar
41. Van Vliet, K. J., Bao, G., and Suresh, S., Acta Materialia, 51 5881 (2003).Google Scholar
42. Zohar, O. et al., Biophysical Journal, 74(1), 82 (1998).Google Scholar