Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-ngm8v Total loading time: 0.187 Render date: 2021-06-15T05:14:07.823Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Characteristics of N-doped Sb2Te3 Films by X-ray Diffraction and Resistance Measurement for Phase-change Memory

Published online by Cambridge University Press:  01 February 2011

You Yin
Affiliation:
yinyou@el.gunma-u.ac.jp, Gunma University, Department of Nano-Material Systems, 1-5-1 Tenjin, Kiryu, Gunma, Kiryu, 376-8515, Japan, +81-277-30-1723, +81-277-30-1707
Naoya Higano
Affiliation:
mukaino77@hotmail.co.jp, Gunma University, Department of Nano-Material Systems, 1-5-1 Tenjin, Kiryu, Gunma, 376-8515, Japan
Kazuhiro Ohta
Affiliation:
bar-ebhoth@docomo.ne.jp, Gunma University, Department of Electronic Engineering, 1-5-1 Tenjin, Kiryu, Gunma, 376-8515, Japan
Akihira Miyachi
Affiliation:
a_miyachi@yahoo.co.jp, Gunma University, Department of Nano-Material Systems, 1-5-1 Tenjin, Kiryu, Gunma, 376-8515, Japan
Masahiro Asai
Affiliation:
papet_master@hotmail.com, Gunma University, Department of Nano-Material Systems, 1-5-1 Tenjin, Kiryu, Gunma, 376-8515, Japan
Daisuke Niida
Affiliation:
ready_go_danieru@hotmail.com, Gunma University, Department of Nano-Material Systems, 1-5-1 Tenjin,, Kiryu, Gunma, 376-8515, Japan
Hayato Sone
Affiliation:
sone@el.gunma-u.ac.jp, Gunma University, Department of Nano-Material Systems, 1-5-1 Tenjin, Kiryu, Gunma, 376-8515, Japan
Sumio Hosaka
Affiliation:
hosaka@el.gunma-u.ac.jp, Gunma University, Department of Nano-Material Systems, 1-5-1 Tenjin, Kiryu, Gunma, 376-8515, Japan
Get access

Abstract

In this paper, characterizations of sputtered undoped and nitrogen-doped Sb2Te3 (ST and STN) films by X-ray diffraction (XRD) and resistance measurements are described and their application of lateral phase-change memory (PCM) is presented. Nitrogen concentration of the films was controlled by changing the flow rate ratio of N2/Ar during sputtering. Resitivity of STN films drops by 3-4 orders of magnitude due to crystallization. Resistivity increase of the STN film (N2/Ar=0.15) at above 270°C results from phase precipitation of SbN. Experimental results reveal that the temperature of crystallization to face-centered cubic (fcc) significantly increases from below 100°C to 160–220°C with increasing the ratio of N2/Ar (in the range of 0–0.15) and crystal structure further transforms from fcc to hexagonal. At high flow rate ratio of N2/Ar (>0.15), hexagonal Te phase firstly appears at 160°C and then orthorhombic SbN appears at 290°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Lai, S., Lowrey, T., IEDM Tech. Dig. (2001) 803.Google Scholar
2. Yin, Y., Sone, H., Hosaka, S., Jpn. J. Appl. Phys. 45, 8600 (2006).CrossRefGoogle Scholar
3. Ovshinsky, S.R., Fritzsche, H., IEEE. Trans. Electron. Dev. 20 (1973) 91.CrossRefGoogle Scholar
4. Oh, J.H., Ryu, S.W., Choi, B.J., Choi, S., Hwang, C.S., Kim, H.J., Hwang, S.Y., Kim, Y.J., Park, H.C., Chang, H.Y., Hong, S.K., J. Korean Phys. Soc. 49 (2006) 1173.Google Scholar
5. Yin, Y., Miyachi, A., Niida, D., Sone, H., Hosaka, S.: Jpn. J. Appl. Phys. 45 (2006) 3238.CrossRefGoogle Scholar
6. Yin, Y., Miyachi, A., Niida, D., Sone, H., Hosaka, S., Jpn. J. Appl. Phys. 45 (2006) L726.CrossRefGoogle Scholar
7. Hosaka, S., Miyauchi, K., Tumura, T., Yin, Y., Sone, H., IEEE Trans. Electron Devices 54, 517 (2007).CrossRefGoogle Scholar
8. Yin, Y., Sone, H., Hosaka, S., Jpn. J. Appl. Phys. 45, 4951 (2006).CrossRefGoogle Scholar
9. Liu, B., Song, Z., Feng, S., and Chen, B., Microelectronic Engineering 82, 168 (2005).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Characteristics of N-doped Sb2Te3 Films by X-ray Diffraction and Resistance Measurement for Phase-change Memory
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Characteristics of N-doped Sb2Te3 Films by X-ray Diffraction and Resistance Measurement for Phase-change Memory
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Characteristics of N-doped Sb2Te3 Films by X-ray Diffraction and Resistance Measurement for Phase-change Memory
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *