Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-scc96 Total loading time: 0.517 Render date: 2021-06-20T16:05:37.303Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Catalytic Property of Chemically Pretreated Ni3Al/Ni Two-phase Alloy Foils for Methane Steam Reforming

Published online by Cambridge University Press:  01 February 2011

Daisuke Kamikihara
Affiliation:
KAMIKIHARA.Daisuke@nims.go.jp, Graduate school of pure and applied sciences, University of Tsukuba, Tsukuba, Japan
Ya Xu
Affiliation:
XU.Ya@nims.go.jp, National Institute for Materials Science, Tsukuba, Japan
Masahiko Demura
Affiliation:
DEMURA.Masahiko@nims.go.jp, NIMS, Fuel Cell Material Center, Tsukuba, Japan
Toshiyuki Hirano
Affiliation:
HIRANO.Toshiyuki@nims.go.jp, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
Get access

Abstract

We have found that Ni3Al intermetallics shows catalytic activity for H2 production reaction, such as methane steam reforming. In addition to the single-phase Ni3Al, we recently studied the catalytic property of the Ni3Al/Ni two-phase alloy in foil form, and have found that the catalytic activity is not so high in the cold-rolled state. In case of atomized Ni3Al powder with a NiAl/Ni3Al two-phase structure in fact, it is possible to improve the catalytic activity for methane steam reforming by chemical pretreatment in acid and subsequent alkali solutions [1]. The reason was similarly due to the formation of fine Ni particles on the porous surface. These results show a possibility to improve the catalytic activity of Ni3Al/Ni two-phase alloy foils by the two-step chemical treatment similar as powder. In this study we carried out this chemical pretreatment on the surface of Ni3Al/Ni two-phase alloy foil and the catalytic properties for methane steam reforming were evaluated. Ni3Al/Ni two-phase alloy foil (Ni-18 at% Al) with a thickness of 30 μm was used. The chemical pretreatment consisted of two steps, the first step was acid leaching (HCl + HNO3, vol. ratio 3:1) and the second step was alkali leaching (NaOH solution, 20 wt%). Methane steam reforming was carried out in a conventional fixed-bed flow reactor as described in previous reports [1]. Prior to the reaction, the foil was reduced at 873 K for 1 hour by H2. Then isothermal test was carried out at 1123 K for 50 hours under steam-to-carbon ratio of 1. The surface morphology was analyzed using SEM and EDS. The chemically pretreated foil showed much higher catalytic activity for methane steam reforming than the non-treated foil. Especially, the catalytic activity rapidly increased during in the first several hours, and then slowly increased during the subsequent reaction. The maximum H2 production rate was about 30 L/min/m2. This value was 40 times higher than the non-treated foil. This result indicated that the catalytic activity can be improved by chemical pretreatment in acid and subsequent alkali solutions. The surface morphology observation revealed that acid leaching dissolved Ni3Al phase and alkali leaching dissolved Al mainly, resulting in the Ni-enriched surface structure. We consider that this Ni-enriched surface introduced by the two-step chemical treatment attributed to the initial catalytic activity. It also revealed that many fine Ni particles were formed on the surface during the reaction, and the amount of fine Ni particles increased with time. We consider that these Ni particles produced during reaction, contributed to the increase of catalytic activity during reaction. [1] Y. Ma, Y. Xu, M. Demura, D.H. Chun, G.Q. Xie, T. Hirano, Catal. Lett. 112 (2006) 31

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Pope, D.P. and Ezz, S.S., Int. Mater. Rev. 29 (1984) 136.CrossRefGoogle Scholar
[2] Stoloff, N.S., Int. Mater. Rev. 34 (1989) 153.CrossRefGoogle Scholar
[3] Yamaguchi, M. and Umakoshi, Y., Mater. Sci. 34 (1990) 1.Google Scholar
[4] Demura, M., Suga, Y., Umezawa, O., George, E.P. and Hirano, T., Intermetallics 9 (2001) 157.CrossRefGoogle Scholar
[5] Chun, D.H., Xu, Y., Demura, M., Kishida, K., Oh, M.H., Hirano, T. and Wee, D.M., Catal. Lett. 106 (2006) 71.CrossRefGoogle Scholar
[6] Chun, D.H., Xu, Y., Demura, M., Kishida, K., Wee, D.M. and Hirano, T., J. Catal. 243 (2006) 99.CrossRefGoogle Scholar
[7] Xu, Y., Kameoka, S., Kishida, K., Demura, M., Tsai, A.P. and Hirano, T., Intermetallics 13 (2005) 151.CrossRefGoogle Scholar
[8] Xu, Y., Kameoka, S., Kishida, K., Demura, M., Tsai, A.P. and Hirano, T., Mater. Trans. 45 (2004) 3177.CrossRefGoogle Scholar
[9] Ma, Y., Xu, Y., Demura, M., and Hirano, T., unpublished.Google Scholar
[10] Ma, Y., Xu, Y., Demura, M., Chun, D.H., Xie, G.Q. and Hirano, T., Catal. Lett. 112 (2006) 31.CrossRefGoogle Scholar
[11] Borodians'Ka, H., Demura, M., Kishida, K. and Hirano, T., Intermetallics 10 (2002) 255.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Catalytic Property of Chemically Pretreated Ni3Al/Ni Two-phase Alloy Foils for Methane Steam Reforming
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Catalytic Property of Chemically Pretreated Ni3Al/Ni Two-phase Alloy Foils for Methane Steam Reforming
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Catalytic Property of Chemically Pretreated Ni3Al/Ni Two-phase Alloy Foils for Methane Steam Reforming
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *