Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-7bjf6 Total loading time: 0.311 Render date: 2021-08-05T17:45:22.973Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Calculations of Perovskite Surface Relaxation

Published online by Cambridge University Press:  21 March 2011

E. Heifets
Affiliation:
Carnegie Institution of Washington, Washington, D.C.20015 Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125
E.A. Kotominc
Affiliation:
Fachbereich Physik, Universität Osnabräck, D-49069 Osnabrück, Germany Institute of Solid State Physics, University of Latvia, 8 Kengaraga, Riga LV-1063, Latvia
R.I. Eglitisc
Affiliation:
Fachbereich Physik, Universität Osnabräck, D-49069 Osnabrück, Germany
R.E. Cohen
Affiliation:
Carnegie Institution of Washington, Washington, D.C.20015 Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

The (100) and (110) surface relaxations are calculated for SrTiO3 and BaTiO3 perovskite thin films by means of a semi-empirical shell model (SM) for different surface terminations. Our SM results for the (100) surface structure are in good agreement with our present ab initio Hartree-Fock calculations with electron correlation corrections, previous ab initio pseudopotential calculationsand LEED experiments. The surface energy for the Ba-, Sr-, TiO- terminated (110) surfaces is found much larger than that for the (100) one. In contrast, the surface energy for the asymmetric O-termination, where outermost O atoms are strongly on-plane displaced, is the lowest for all (110) terminations and thus the most stable.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Noguera, C., Physics and Chemistry at Oxide Surfaces, Cambridge Univ. Press, N.Y., 1996.CrossRefGoogle Scholar
[2] Lines, M.E. and Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials, Clarendon, Oxford, 1977.Google Scholar
[3] Auciello, O., Scott, J.F., and Ramesh, R., Physics Today, July 1998, 22.CrossRefGoogle Scholar
[4] Proceedings of the Williamsburg workshop on Ferroelectrics-99, J. Phys. Chem. Sol., 61, No 2 (2000).Google Scholar
[5] Zhong, W., Vanderbilt, D., Phys. Rev. B 53, 5047 (1996).CrossRefGoogle Scholar
[6] Bickel, N., Schmidt, G., Heinz, K., and Müller, K., Phys. Rev. Lett. 62, 2009 (1989).CrossRefGoogle Scholar
[7] Hikita, T., Hanada, T., Kudo, M., Kawai, M., Surf. Sci. 287/288, 377 (1993).CrossRefGoogle Scholar
[8] Kudo, M., Hikita, T., Hanada, T., Sekine, R., and Kawai, M.,Surf. and Interf. Analysis, 22, 412 (1994).CrossRefGoogle Scholar
[9] Ikeda, A., Nishimura, T., Morishita, T., Kido, Y., Surf. Sci. 433–435, 520 (1999).CrossRefGoogle Scholar
[10] Nishimura, T., Ikeda, A., Namba, H., Morishita, T., Kido, Y., Surf. Sci. 421, 273 (1999).CrossRefGoogle Scholar
[11] Padilla, J. and Vanderbilt, D., Surf. Sci. 418, 64 (1998).CrossRefGoogle Scholar
[12] Padilla, J. and Vanderbilt, D., Phys. Rev. B 56, 1625 (1997).CrossRefGoogle Scholar
[13] Meyer, B., Padilla, J., and VVanderbilt, D., Faraday Discussions, 114, 395 (1999).CrossRefGoogle Scholar
[14] Cora, F. and Catlow, C.R.A., Faraday Discussions, 114, 421 (1999).CrossRefGoogle Scholar
[15] Cohen, R.E., Ferroelectrics 194, 323342 (1997).CrossRefGoogle Scholar
[16] Fu, L., Yashenko, E., Resca, L., and Resta, R., Phys. Rev. B 60, 26972703 (1999).CrossRefGoogle Scholar
[17rsqb; Cheng, C., Kunc, K., and Lee, M.H., Phys. Rev. B, 62, 1040910417 (2000).CrossRefGoogle Scholar
[18] Ravikumar, V., Wolf, D., and Dravid, V.P., Phys. Rev. Lett., 74, 960 (1995).CrossRefGoogle Scholar
[19] Prade, J., Schröder, U., Kress, W., Kulkarni, F.W. de, J. Phys: Condens. Matter, 5, 1 (1993).Google Scholar
[20] , Tinte and , Tachiotti, AIP Conf. Proc 535 ed. Cohen, R, 273282 (2000).CrossRefGoogle Scholar
[21] Bando, H., Aiura, Y., Haruyama, Y., Shimizu, T., Nishihara, Y., J. Vac. Sci. Technol., B 13, 1150 (1995); K.Szot and W.Speier, Phys. Rev. B 60, 5909 (1999); Q.D.Jiang and J.Zegenhagen, Surf. Sci. 425, 343 (1999); R.Souda, Phys. Rev. B 60, 6068 (1999).CrossRefGoogle Scholar
[22] Heifets, E., Kotomin, E.A., and Maier, J., Surf. Sci., 462, 19 (2000).CrossRefGoogle Scholar
[23] Gay, D.H. and Rohl, A.L., J. Chem. Soc. Faraday Trans. 91, 925 (1995).CrossRefGoogle Scholar
[24] Dovesi, R., Saunders, V.R., Roetti, C., Causa, M., Harrison, N.M., Orlando, R., Apra, E., Crystal-95 User Manual (University of Torino, 1996).Google Scholar
[25] Tasker, P.W., J. Phys. C : Solid State Phys., 12, 4977 (1979).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Calculations of Perovskite Surface Relaxation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Calculations of Perovskite Surface Relaxation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Calculations of Perovskite Surface Relaxation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *