Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-mzfmx Total loading time: 0.627 Render date: 2022-08-10T09:28:28.683Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Boron Nitride Nanotube, Nanocable and Nanocone

Published online by Cambridge University Press:  15 March 2011

Dmitri Golberg
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, JAPAN
Yoshio Bando*
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, JAPAN
Laure Bourgeois
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, JAPAN
Renzhi Ma
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, JAPAN
Kazuhiko Ogawa
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, JAPAN
Keiji Kurashima
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, JAPAN
Tadao Sato
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, JAPAN
*
*corresponding author. E-mail: bando.yoshio@nims.go.jp
Get access

Abstract

Boron nitride nanotubes, nanocones and nanocables were prepared and their atomic structures were identified by using a 300 kV field emission transmission electron microscope equipped with an electron energy loss spectrometer and energy dispersion X-ray detector. Multiwalled BN nanotubes and nanocones were synthesized by reacting C nanotube templates and boron oxide under nitrogen atmosphere at 1723-2023 K. Additions of metal oxide promoters, e.g. MoO3, CuO, and PbO, significantly improved BN-rich nanotube yield at the expense of B-C-N nanotubes. It was shown that BN nanotubes had preferential “zigzag” chirality and exhibited either hexagonal or rhombohedral stacking between shells. An efficient synthetic route for bulk quantities of BN tube production was also developed, where a B-N-O precursor was used during a CVD process. Nanocones of BN were mostly found to have 240° disclinations which ensure the presence of B-N bonds only. One case was observed of a cone constituted of 300° disclination implying that structures may contain line defects of non B-N bonds. The first synthesis of insulating BN nanocables was carried out, where BN nanotubes were entirely filled with Invar Fe-Ni nanorods. The filled nanotube diameters ranged between 30 to 300 nm, whereas the length of filling reached several microns.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Present address: School of Physics and Materials Engineering, PO Box 69M, Monash University, Victoria 3800, AUSTRALIA

References

1. Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M. L., Louie, S.G., and Zettl, A., Science 269, 966 (1995).CrossRefGoogle Scholar
2. Loiseau, A., Willaime, F., Demoncy, N., Hug, G., and Pascard, H., Phys. Rev. Lett. 76, 4737 (1996).CrossRefGoogle Scholar
3. Terrones, M. et al. Chem. Phys. Lett. 259, 568 (1996).CrossRefGoogle Scholar
4. Golberg, D., Bando, Y., Eremets, M., Takemura, K., Kurashima, K., and Yusa, H., Appl. Phys. Lett. 69, 2045 (1996).CrossRefGoogle Scholar
5. Cumings, J., and Zettl, A., Chem. Phys. Lett. 316, 211 (2000).CrossRefGoogle Scholar
6. Bengu, E., and Marks, L.D., Phys. Rev. Lett. 86, 2385 (2000).CrossRefGoogle Scholar
7. Bourgeois, L., Bando, Y., Kurashima, K., and Sato, T., Phil. Mag. A80, 129 (2000).CrossRefGoogle Scholar
8. Shelimov, K. and Moscovits, M., Chem. Mater. 12, 250 (2000).CrossRefGoogle Scholar
9. Bando, Y., Ogawa, K., and Golberg, D., Chem. Phys. Lett. 347, 349 (2001).CrossRefGoogle Scholar
10. Golberg, D., Bando, Y., Kurashima, K., and Sato, T., Scripta Mater. 44, 1561 (2001).CrossRefGoogle Scholar
11. Iijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
12. Haanstra, H., Knippenberg, W., and Verspui, G., J. Crys. Growth 16, 71 (1972).CrossRefGoogle Scholar
13. Ajayan, P.M. and Iijima, S., Nature 361, 333 (1993).CrossRefGoogle Scholar
14. Menon, M., Srivastava, D., Chem. Phys. Lett. 307, 407 (1999).CrossRefGoogle Scholar
15. Golberg, D., Han, W., Bando, Y., Bourgeois, L., Kurashima, K., andT. Sato, J. Appl. Phys. 86, 2364 (1999).CrossRefGoogle Scholar
16. Golberg, D., Bando, Y., Kurashima, K., Sato, T., Chem. Phys. Lett. 323, 185 (2000).CrossRefGoogle Scholar
17. Golberg, D., Bando, Y., Kurashima, K., Sato, T., Sol. St. Comm. 116, 1 (2000).CrossRefGoogle Scholar
18. Golberg, D., Bando, Y., Bourgeois, L., Kurashima, K., Sato, T., Appl. Phys. Lett. 77, 1979 (2000) 1979.CrossRefGoogle Scholar
19. Golberg, D., Bando, Y., Appl. Phys. Lett. 79, 415 (2001).CrossRefGoogle Scholar
20. Terauchi, M., Tanaka, M., Suzuki, K., Ogino, A., Kimura, K., Chem. Phys. Lett. 324, 359 (2000) 359.CrossRefGoogle Scholar
21. Demczyk, B.G., Cumings, J., Zettl, A., Ritchie, R.O., Appl. Phys. Lett. 78, 2772 (2001).CrossRefGoogle Scholar
22. Ma, R., Bando, Y., Sato, T., and Kurasima, K., Chem. Mater. 13, 2965 (2001).CrossRefGoogle Scholar
23. Bourgeois, L., Bando, Y., and Sato, Y., J. Phys. D: Appl. Phys. 33, 1902 (2000).CrossRefGoogle Scholar
24. Amelinckx, S., Luyten, W., Krekels, T., Tendeloo, G. Van, and Landuyt, J. Van, J. Cryst. Growth 121, 543 (1992).Google Scholar
25. Wildoer, J.W.G., Venema, L.C., Rinzler, A.C., Smalley, R.E., Dekker, C., Nature 391, 59 (1998).CrossRefGoogle Scholar
26. Blase, X., Rubio, A., Louie, S.G., Cohen, M.L., Europhys. Lett. 28, 335 (1994).CrossRefGoogle Scholar
27. Dujardin, E., Ebbesen, T.W., Hiura, H., Tanigaki, K., Science 265, 1850 (1994).CrossRefGoogle Scholar
28. Tsang, S.C., Chen, Y.K., Harris, P.J.F., Green, M.L.H., Nature 372, 159 (1994).CrossRefGoogle Scholar
29. Han, W., Bando, Y., Kurashima, K., Sato, T., Appl. Phys. Lett. 73, 3085 (1998).CrossRefGoogle Scholar
30. Ma, R., Bando, Y., and Sato, T., Chem. Phys. Lett. 337, 61 (2000).CrossRefGoogle Scholar
31. Ahn, C.C., Krivanec, O.L., Burgner, R.P., Disco, M.M., and Swann, P.R., in “EELS Atlas” (a Joint Project of Arizona State Univ. HREM Facility and Gatan Inc. USA, 1993) p. 8.Google Scholar
32. Mishima, O. and Era, K., in“Science and Technology of Boron Nitride”, ed. Kumashiro, Y. (Marcel Dekker, Inc. the Netherlands, 2000) p. 514.Google Scholar
33. Stansky, D.V., Tsuda, O., Ikuhara, Y., and Yoshida, T., Proc. 56 Conf. of the Japanese Soc. Electon Microscopy, Tokyo, 2000, 35, Suppl.1, p.90.Google Scholar
34. Petrusha, I., personal communication.Google Scholar
35. Louchev, O., and Sato, Y., Appl. Phys. Lett. 74, 194 (1999).CrossRefGoogle Scholar
36. Blase, X., Charlier, J.-Ch., DeVita, A., Car, R., Appl. Phys. A68, 293 (1999).CrossRefGoogle Scholar
37. Hornbogen, E., “Physical Metallurgy of Steels”, Physical Metallurgy, ed. Cahn, R.W. and Haasen, P., Part II (North-Holland Phys. Publishers, 1983) p. 1131.Google Scholar
38. Bourgeois, L., Bando, Y., Han, W., and Sato, T., Phys. Rev. B61, 7686 (2000).CrossRefGoogle Scholar
39. Ge, M. and Sattler, K., Chem. Phys. Lett. 220, 192 (1994). Z2.3.10CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Boron Nitride Nanotube, Nanocable and Nanocone
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Boron Nitride Nanotube, Nanocable and Nanocone
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Boron Nitride Nanotube, Nanocable and Nanocone
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *