Hostname: page-component-5d59c44645-dknvm Total loading time: 0 Render date: 2024-02-25T19:54:28.509Z Has data issue: false hasContentIssue false

Bipolar Electrical Conductive Transparent Oxide, CuInO2

Published online by Cambridge University Press:  21 March 2011

Hiroshi Yanagi
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Kazushige Ueda
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Hiromichi Ohta
Affiliation:
Hosono Project of Transparent ElectroActive Materials, ERATO, JST, KSP C-1232, 3-2-1, Sakado, Takatsu-ku, Kawasaki, 213-0012, Japan
Masahiro Hirano
Affiliation:
Hosono Project of Transparent ElectroActive Materials, ERATO, JST, KSP C-1232, 3-2-1, Sakado, Takatsu-ku, Kawasaki, 213-0012, Japan
Hideo Hosono
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Get access

Abstract

A transparent oxide semiconductor with delafossite structure, CuInO2, was found to exhibit both p-type and n-type conduction by doping of an appropriate impurity and tuning of proper film-deposition conditions. Thin films of Ca-doped or Sn-doped CuInO2 were prepared on -Al2O3 (001) single crystal substrates by pulsed laser deposition method. The films were deposited at 723 K in O2 atmosphere of 1.0 Pa for the Ca-doped films or 1.5 Pa for the Sn-doped films. The positive sign of the Seebeck coefficient demonstrated p-type conduction in the Ca-doped films, while the Seebeck coefficient of the Sn-doped films was negative indicating n-type conductivity. The electrical conductivities of Ca-doped and Sn-doped CuInO2 thin films were 2.8×10−3 S·cm−1 and 3.8×10−3 S·cm−1, respectively, at 300 K. The optical band gap of each film was estimated to be ∼3.9 eV. Since CuInO2 exhibited bipolarity in electrical conduction, transparent p-n homojunctions based on CuInO2 were fabricated on (111) surface of yttria-stabilized zirconia single-crystal substrates. The structure of the diode was In2O3:Sn / n-CuInO2:Sn / p-CuInO2:Ca / In2O3:Sn electrode on the substrate. The contact between the n-and p-type CuInO2 semiconducting oxides was found to be rectifying. The turn-on voltage was ∼1.8 V.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kawazoe, H., Yasukawa, M., Hyodo, H., Kurita, M., Yanagi, H., and Hosono, H., Nature, 389, 939 (1997).Google Scholar
2. Yanagi, H., Inoue, S., Ueda, K., Kawazoe, H., and Hosono, H., J. Appl. Phys., 88, 4159 (2000).Google Scholar
3. Yanagi, H., Kawazoe, H., Kudo, A., Yasukawa, M., and Hosono, H., J. Electroceram., 4, 427 (2000).Google Scholar
4. Ueda, K., Hase, T., Yanagi, H., Kawazoe, H., Hosono, H., Ohta, H., Orita, M., and Hirano, M., J. Appl. Phys., 89, 1790 (2001).Google Scholar
5. Otabe, T., Ueda, K., Kudoh, A., Hosono, H., and Kawazoe, H., Appl. Phys. Lett., 72, 1036 (1998).Google Scholar
6. Ibuki, S., Yanagi, H., Ueda, K., Kawazoe, H., and Hosono, H., J. Appl. Phys., 88, 3067 (2000).Google Scholar
7. Duan, N., Sleight, A. W., Jayaraj, M. K., and Tate, J., Appl. Phys. Lett., 77, 1325 (2000).Google Scholar
8. Stauber, R. E., Perkins, J. D., Parilla, P. A., and Ginley, D. S., Electrochem. Solid-State Lett., 2, 654 (1999).Google Scholar
9. Gong, H.z, Wang, Y., and Luo, Y., Appl. Phys. Lett., 76, 3959 (2000).Google Scholar
10. Kudo, A., Yanagi, H., Hosono, H., and Kawazoe, H., Appl. Phys. Lett., 73, 220 (1998).Google Scholar
11. Kudo, A., Yanagi, H., Yano, Y., Ueda, K., Hosono, H., and Kawazoe, H., Appl. Phys. Lett., 75, 2851 (1999).Google Scholar
12. Ohta, H., Kawamura, K., Orita, M., Hirano, M., Sarukura, N., and Hosono, H., Appl. Phys. Lett., 77, 475 (2000).Google Scholar
13. Kawazoe, H. and Ueda, K., J. Am. Ceram. Soc., 82, 3330 (1999).Google Scholar
14. Kawazoe, H., Yanagi, H., Ueda, K., and Hosono, H., Mater. Res. Soc. Bull., 25, 28 (2000).Google Scholar
15. Shimode, M., Sasaki, M., and Mukaida, K., J. Solid State Chem., 151, 16 (2000).Google Scholar
16. Pulsed Laser Deposition of Thin Films, edited by Chrisey, D. B. and Hubler, G. K. (Wiley-Interscience, New York, 1994).Google Scholar