Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-6mft8 Total loading time: 0.316 Render date: 2021-10-21T09:52:15.660Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Biogenic Inspiration for the Controlled Nucleation and Growth of Inorganic Materials

Published online by Cambridge University Press:  14 March 2011

Brigid R Heywood
Affiliation:
Crystal Science Group, Lennard-Jones Laboratories, School of Chemistry & Physics, Keele University, Keele, Staffs. ST5 5BG, UK
Susan Hill
Affiliation:
Crystal Science Group, Lennard-Jones Laboratories, School of Chemistry & Physics, Keele University, Keele, Staffs. ST5 5BG, UK
Kate Pitt
Affiliation:
Crystal Science Group, Lennard-Jones Laboratories, School of Chemistry & Physics, Keele University, Keele, Staffs. ST5 5BG, UK
Paul Tibble
Affiliation:
Crystal Science Group, Lennard-Jones Laboratories, School of Chemistry & Physics, Keele University, Keele, Staffs. ST5 5BG, UK
Stuart Williams
Affiliation:
Crystal Science Group, Lennard-Jones Laboratories, School of Chemistry & Physics, Keele University, Keele, Staffs. ST5 5BG, UK
Get access

Abstract

The development of effective protocols for the control of crystal structure, size and morphology attracts considerable interest given the requirement for particles of modal size and shape in many areas of particle processing and the importance of crystallochemical selectivity in determining the exploitable properties of crystalline solids. In biological systems there are many examples of advanced “crystal engineering” in which materials are deposited in a highly controlled manner to produce crystal phases that are unique with respect to their structure, habit, uniformity of size and texture. A review of biomineralisation will show that while a complex array of strategies have evolved for regulating crystal growth, one feature is common to the biological paradigm. Interactions between supramolecular organic structures and the nascent inorganic solids play a fundamental role in controlling the deposition of the biominerals and ordering the assembly of these units into hierarchical structures. In order to gain a better understanding of the molecular recognition events, which take place at the organic-inorganic interface, a bio-inspired crystal chemical approach has been adopted. For this work organised organic assemblies (e.g. surfactant aggregates, peptide mimics, dendrimers) of precise molecular design (head group identity, packing conformation, primary sequence etc.) are being assayed for their effectiveness in controlling the nucleation and growth of crystals. It is evident from these studies that the chemical organisation of the polymeric microenvironment operates at the molecular level to control certain aspects of the nucleation, growth and stabilisation of inorganic particles. By systematically changing the molecular motif of the organic template we have established that the size, crystallographic orientation, growth and assembly of the mineral phase can be tailored to function. These results have relevance not only to our understanding of biomineralisation but also suggest a multiplicity of exploitable opportunities for the engineering of crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weiner, S. and Addadi, L, J Mat. Chem. 7 689702 (1997)CrossRefGoogle Scholar
2. Jeong, B. C., Hawes, C, Bonthrone, K. M. and Macaskie, L. E., Microbiology 143, 24972507 (1997)CrossRefGoogle Scholar
3. Konhauser, K.O., FEMS Micobiology Reviews, 20, 315326 (1996); T Klaus, Proc Natl Acad Sci, 96, 13611-13613 (1999)CrossRefGoogle Scholar
4. Lowenstam, H. and Weiner, S., ‘On Biomineralisation’ (Oxford University Press 1989)Google Scholar
5. Addadi, L. and Weiner, S., Angew Chemie. Intl. Edn. Engl, 31, 153169 (1992)CrossRefGoogle Scholar
6. Mann, S., Nature 365, 499505 (1993)CrossRefGoogle Scholar
7. Fernanedez, M. S., Araya, M. and Arias, J. L., Matrix Biology, 16, 1320 (1996)CrossRefGoogle Scholar
8. Albeck, S., Addadi, L. and Weiner, S., Conn. Tiss. Res, 34–35, 419424 (1996); M.E. Marsh and D. P. Dickinson, Protoplasma, 199, 9-17 (1998)Google Scholar
9. Butler, W.T, Ritchie, H.H. and Bronckers, A. L. J. J., Ciba Foundation Symposium 205 107117 (1998); A. George, L. Bannon, B. Sabsay, J. W. Dillon, J. Mallone, A. Veis, N. A. Jenkins, D. J. Gilbert and N. G. Copeland, J. Biol. Chem, 271,32869-32873 (1996); K. L. Hirst, K. O'Connor, M. F. Young, and M. J. Dixon, J Dent. Res, 76, 754-760 (1996); M. l. Paine and M. L. Snead, J. Bone Min Res, 12, 221-227 (1997)Google Scholar
10. Powell, A. K., Structure and Bonding, 88, 138 (1996); Kroger, N., R. Deutzmann, M. Sumper, Science, 286, 1129-1130 (1999)Google Scholar
11. Dana, J. W. and Dana, E. S., The System of Mineralogy (Wiley, New York, 1951); R. J. Reeder, Reviews in Mineralogy, 11, 1-47 (1983)Google Scholar
12. Hirst, K. L., Simons, D., Feng, J., Aplin, H., Dixon, M. J. and McDougall, M., Genomics, 42, 3845 (1998)CrossRefGoogle Scholar
13. Bianconi, P. A., Lin, J. and Strezelecki, A. R., Nature, 349, 315317 (1991)CrossRefGoogle Scholar
14. Brisdon, B., Heywood, B. R., Hodson, A., Mann, S. and Wong, K, Adv. Mat, 5, 449512 (1993)CrossRefGoogle Scholar
15. Marentette, J. M., Norwig, J., Stockelmann, E., Meyer, W. H. and Wegner, G., Adv Mat, 9, 647651 (1997)CrossRefGoogle Scholar
16. Puricha, N. and Erway, L. C. Dev. Biol, 27, 395405 (1975); A. Bigi, E. Foresti, M. Gandolfi, M Gazzano and N. Roveri, J Inorg Chem, 58, 49-58 (1995); T. Kitijama, M. Tomita, C.E. Killian, K. Akasaka and F. H. Wilt, Dev. Growth Diff, 38, 687-695 (1996)CrossRefGoogle Scholar
17. Didymus, J., Mann, S., Sanderson, N. and Heywood, B. R. J Chem Soc, Farad Trans 86, 18731880 (1989)Google Scholar
18. Carlstrom, D., Biol Bull, 125, 441463 (1963)CrossRefGoogle Scholar
19. Pote, K. G. and Ross, M., Comp Biochem Physiol 98B, 287295 (1991)Google Scholar
20. Berman, A., Adddadi, L. and Weiner, S. Nature, 331, 546548 (1988)Google Scholar
21. Aizenberg, J., Hanson, J., Koetlze, T F., Leiserowitz, L., Weiner, S. and Addadi, L., Chem Eur J, 7, 414422 (1995)CrossRefGoogle Scholar
22. Landau, E. M., Levanon, M., Leiserowitz, L., Lahav, M., and Sagiv, J., Nature, 318, 353356 (1985)CrossRefGoogle Scholar
23. Heywood, B. R. and Mann, S., Adv. Mat, 6, 920 (1994)CrossRefGoogle Scholar
24. Gaines, G., Insoluble Monolayers at Liquid-Gas Iinterfaces, (Wiley Interscience, New York, 1966)Google Scholar
25. Brinker, J., Nature 394, 256 (1998)Google Scholar
26. Oliver, S., Kuperman, A., Coombs, N., Lough, A. and Ozin, G. Nature 382, 589 (1996)Google Scholar
27. Tanav, K. and Pinnavaia, P., Science 267, 865868 (1995)CrossRefGoogle Scholar
28. Yang, H., Coombs, N. and Ozin, G., Nature 386, 692695 (1997)CrossRefGoogle Scholar
29. Ulman, A., Introduction of Thin Organic Films; From Langmuir-Blodgett to Self-Assembly (Academic Press, Boston, 1991)Google Scholar
30. Bunker, B., Science, 264, 4855 (1994)CrossRefGoogle Scholar
31. Aizenberg, J., Black, A. J., Whitesides, G. M., Nature 394, 868871 (1998)CrossRefGoogle Scholar
32. Berman, A., Ahn, D. J., Lio, A, Salmeron, M., Reichart, A and Charych, D, Science 269, 515518 (1995)CrossRefGoogle Scholar
33. D'Souza, S. M., Alexander, C., Carr, S. W., Waller, A. M, Whitcombe, M.J. and Wulfson, E. N., Nature 398, 312316 (1999)CrossRefGoogle Scholar
34. Fallon, P., Heywood, B. R., Mascal, M. and Williams, S. J., Angew Chemie, in press (2000)Google Scholar
35. Ringsdorf, H., Scharlb, B. and Venzmer, J., Angew Chenie (Intl Ed Engl) 27, 113158 (1988)CrossRefGoogle Scholar
36. Tanaka, N., Kitano, H, Ise, N., J Phys Chem, 4, 62906292 (1990)CrossRefGoogle Scholar
37. Daon, V., Koppee, R. and Kasai, P. H., J Am Chem Soc, 119, 98109815 (1997)CrossRefGoogle Scholar
38. Katalsky, A., Gisenberg, H. and Lifson, S., J Am Chem Soc, 73, 58895890 (1951)CrossRefGoogle Scholar
39. Kitano, Y., Bull Chem Soc Jap, 35, 19731980 (1962)CrossRefGoogle Scholar
40. Fincham, A. and Summer, J. P., Ciba Foundation Symposium, 205, 118134 (1997)Google Scholar
41. Piane, M. L., Deutsch, D. and Snead, M. L., Conn Tiss Res, 34/35, 211(1996)Google Scholar
42. Tomalia, D. D., Angew. Chem. Int. Ed. Eng 29, 138 (1990)CrossRefGoogle Scholar
43. Heywood, B. R., German, C. S., S J Hill and Williams, S.J., J Mat Chem, in press (2000)Google Scholar
44. Heywood, B. R Hill, S.J. and Williams, S.J., Adv Mat, in press (2000)Google Scholar
45. Feast, W.J., Heywood, B.R., Hobson, L, Williams, S.J., J Mat Chem, in press (2000)Google Scholar
46. Kreger, D. R. and Boere, H., Acta Bot Neerl., 18, 143 (1969)CrossRefGoogle Scholar
47. Gooday, A. J. and Nott, J. A., J Mar Biol Ass, UK, 62, 595 (1982)CrossRefGoogle Scholar
48. Leeden, M. C. Van der, Reedijk, M. C., and Rosmalen, G. M. van, Estudios Geol., 38, 279 (1982)Google Scholar
49. Leeden, M. C. Van der and Rosmalen, G. M van, SPE Production Engineering, 70 (1990)Google Scholar
50. Heywood, B. R. and Mann, S., Langmuir 8, 14921494 (1992)CrossRefGoogle Scholar
51. Benton, R. J., Faraday Discussions, 95, 281287 (1993)CrossRefGoogle Scholar
52. Davey, R. J., Black, S., Bromley, L. Cottier, L., Dobbs, B. and Rout, L. J Chem Soc, Farad Trans, 87, 34093413 (1991)Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Biogenic Inspiration for the Controlled Nucleation and Growth of Inorganic Materials
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Biogenic Inspiration for the Controlled Nucleation and Growth of Inorganic Materials
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Biogenic Inspiration for the Controlled Nucleation and Growth of Inorganic Materials
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *