Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-jn9wc Total loading time: 0.169 Render date: 2021-05-13T17:59:19.174Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Barium Strontium Titanate Ceramics Prepared by a Reaction-Sintering Process

Published online by Cambridge University Press:  01 February 2011

Yi-Cheng Liou
Affiliation:
Department of Electronic Engineering, Kun-Shan University of Technology, Tainan Hsien 710, Taiwan, R.O.C.
Jen-Hsien Chen
Affiliation:
Department of Electronic Engineering, Kun-Shan University of Technology, Tainan Hsien 710, Taiwan, R.O.C.
Chi-Ting Wu
Affiliation:
Department of Electronic Engineering, Kun-Shan University of Technology, Tainan Hsien 710, Taiwan, R.O.C.
Get access

Abstract

Barium strontium titanate (Ba0.7Sr0.3TiO3, BST) ceramics prepared by a reaction-sintering process were investigated. The mixture of raw materials of stoichiometric Ba0.7Sr0.3TiO3 was pressed and sintered into ceramics without any calcination stage involved. Perovskite BST ceramics were obtained after sintered at 1330–1370°C for 2–6 h. For 6 h soak time, a density value 5.68g/cm3 (99.8% of the theoretic value) was obtained at 1350°C sintering. Grains of sizes between 2μm and 15μm were formed after 1330–1370°C sintering for 2–6 h. A diffused ferroelectric-paraelectric transition was observed in pellets sintered at 1330°C for 2 h and disappeared at a longer soak time or a higher sintering temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Saito, H., Chazono, H., Kishi, H. and Yamaoka, N., Jpn. J. Appl. Phys. 30, 2307 (1991).CrossRefGoogle Scholar
2. Hennings, D. and Rosenstein, G., J. Am. Ceram. Soc. 67, 249 (1984).CrossRefGoogle Scholar
3. Huybrechts, B., Ishizaki, K. and Takata, M., J. Mater. Sci. 30, 2463 (1995).CrossRefGoogle Scholar
4. Liou, J. W. and Chiou, B. S., Mater. Chem. & Phys. 51, 59 (1997).CrossRefGoogle Scholar
5. Takemura, K., Sakuma, T. and Miyasaka, Y., Appl. Phys. Lett. 64, 2967 (1994).CrossRefGoogle Scholar
6. Kawahara, T., Yamamuka, M., Yuuki, A. and Ono, K., Jpn. J. Appl. Phys. 33, 5077 (1995).CrossRefGoogle Scholar
7. Wu, L., Chen, Y. C., Chen, L. J., Chou, Y. P. and Tsai, Y. T., Jpn. J. Appl. Phys. 38, 5612 (1999).CrossRefGoogle Scholar
8. Aoyama, T., Yamazaki, S. and Imai, K., Jpn. J. Appl. Phys. 39, 6348 (2000).CrossRefGoogle Scholar
9. Lim, S. S., Han, M. S., Hahn, S. R. and Lee, S. G., Jpn. J. Appl. Phys. 39, 4835 (2000).CrossRefGoogle Scholar
10. Chang, H. Y., Liu, K. S. and Lin, I. N., J. Eur. Ceram. Soc. 16, 63 (1996).CrossRefGoogle Scholar
11. Hennings, D., Br. Ceram. Proc. 41, 1 (1989).Google Scholar
12. Pinceloup, P., Courtois, C., Leriche, A. and Thierry, B., J. Am. Ceram. Soc. 82, 3049 (1999).CrossRefGoogle Scholar
13. Kumar, V., J. Am. Ceram. Soc. 82, 2580 (1999).CrossRefGoogle Scholar
14. Gomez-Yanez, C., Benitez, C. and Balmori-Ramirez, H., Ceram. Int. 26, 271 (2000).CrossRefGoogle Scholar
15. Kong, L. B., Ma, J., Huang, H., Zhang, R. F. and Que, W. X., J. Alloys and Comp. 337, 226 (2002).CrossRefGoogle Scholar
16. Wang, J., Wan, D. W., Xue, J. M. and Ng, W. B., Singapore Patent No. 9801566–2 (1998).Google Scholar
17. Hamada, K. and Senna, M., J. Mater.Sci. 31, 1725 (1996).CrossRefGoogle Scholar
18. Lee, S. E., Xue, J. M., Wan, D. W. and Wang, J., Acta Mater. 47 (9), 2633 (1999).CrossRefGoogle Scholar
19. Kong, L. B., Ma, J., Mater. Lett. 51, 95 (2001).CrossRefGoogle Scholar
20. Liou, Y. C., Tseng, K. H., Yu, C. H., Proceedings of the 2001 annual Conference of the Chinese Society for Materials Science, 23–24 November 2001, National Chung Hsing University, Taichung, Taiwan, P0309.Google Scholar
21. Liou, Y. C., Tseng, K. H., Yu, C. H., Proceedings of the 2001 annual Conference of the Chinese Society for Materials Science, 23–24 November 2001, National Chung Hsing University, Taichung, Taiwan, P0317.Google Scholar
22. Liou, Y. C., Shih, C. Y., Yu, C. H., Proceedings of the 2001 annual Conference of the Chinese Society for Materials Science, 23–24 November 2001, National Chung Hsing University, Taichung, Taiwan, P03102.Google Scholar
23. Liou, Y. C., J. Electroceram. in press (2004).Google Scholar
24. Liou, Y. C., J. Electroceram. 12, 187 (2004).CrossRefGoogle Scholar
25. Liou, Y. C., J. Electroceram. in press (2004).Google Scholar
26. Rhim, S. M., Bak, H., Hong, S. and Kim, O. K., J. Am. Ceram. Soc. 83[12], 3009 (2000).CrossRefGoogle Scholar
27. Jeon, J. H., J. Eur. Ceram. Soc. 24, 1045 (2004).CrossRefGoogle Scholar
28. Hayashi, T., Shinozaki, H. and Sasaki, , Jpn. J. Appl. Phys. 37, 5232 (1998).CrossRefGoogle Scholar
29. Guo, H., Gao, W. and Yoo, J., Mater. Lett. 58, 1387 (2004).CrossRefGoogle Scholar
30. Zhou, L., Vilarinho, P. M. and Baptista, J. L., J. Eur. Ceram. Soc. 21, 531 (2001).CrossRefGoogle Scholar
31. Hench, L. L. and West, J. K., ‘Principles of Electronic Cermics,” (John Wiley & Sons, 1990), p. 272.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Barium Strontium Titanate Ceramics Prepared by a Reaction-Sintering Process
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Barium Strontium Titanate Ceramics Prepared by a Reaction-Sintering Process
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Barium Strontium Titanate Ceramics Prepared by a Reaction-Sintering Process
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *