Hostname: page-component-594f858ff7-7tp2g Total loading time: 0 Render date: 2023-06-08T09:56:08.626Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

Atomic Transformations and Quantum Transport in Carbon Nanotubes

Published online by Cambridge University Press:  10 February 2011

J. Bernholc
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, bernholc@ncsu.edu
M. Buongiorno Nardelli
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, bernholc@ncsu.edu
J.-L. Fattebert
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, bernholc@ncsu.edu
D. Orlikowski
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, bernholc@ncsu.edu
C. Roland
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, bernholc@ncsu.edu
F. Rosef
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, bernholc@ncsu.edu
Q. Zhao
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, bernholc@ncsu.edu
Get access

Abstract

High strain conditions can lead to a variety of atomic transformations in nanotubes, which usually occur via successive bond rotations. The energetic barrier for the rotation is dramatically lowered by strain, and ab initio results for its strain dependence are presented. While very high strain rates must lead to tube breakage, (n,m) nanotubes with n, m < 14 can display plastic flow under suitable conditions. This occurs through the formation of a 5-7-7-5 defect, which then splits into two 5-7 pairs. The index of the tube changes between the 5-7 pairs, potentially leading to metal-semiconductor junctions. The high strain conditions can be imposed on the tube via, e.g., AFM tip manipulations, and we show that such procedures can lead to intratube device formation.

The defects and the index changes occurring during the mechanical transformations also affect the electrical properties of nanotubes. We have computed the quantum conductances of strained defective and deformed tubes using the tight binding method. The results show that the defect density and the contacts play key roles in reducing the conductance at the Fermi energy. We also explored the role of bending in changing the electrical properties and found that mechanical deformations affect differently the transport properties of achiral and chiral nanotubes. Our results are in good agreement with recent experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Iijima, S., Brabec, C., Maiti, A. and Bernholc, J., J. Chem. Phys. 104, 2089 (1996).CrossRefGoogle Scholar
[2] Yakobson, B.I., Brabec, C. J., and Bernholc, J., Phys. Rev. Lett. 76, 2511 (1996).CrossRefGoogle Scholar
[3] Despres, J., Daguerre, E. and Lafdi, K., Carbon 33, 87 (1995).CrossRefGoogle Scholar
[4] Chopra, N., Benedict, L., Crespi, V., Cohen, M.L., Louie, S.G. and Zettl, A., Nature 377, 135 (1995); R. Ruoff and D. Lorents, Bull. Am. Phys. Soc. 40, 173 (1995).CrossRefGoogle Scholar
[5] See, for instance, Falvo, M.R., Clary, G.J., Taylor, R.M. II, Chi, V., Brooks, F.P. Jr., Washburn, S. and Superfine, R., Nature 389, 582 (1997).CrossRefGoogle Scholar
[6] Nardelli, M. Buongiorno, Yakobson, B.I. and Bernholc, J., Phys. Rev. B 57, R4277 (1998); Phys. Rev. Lett. 81, 4656 (1998).CrossRefGoogle Scholar
[7] Stone, A.J. and Wales, D.J., Chem. Phys. Lett. 128, 501 (1986).CrossRefGoogle Scholar
[8] Collins, P.G., Zettl, A., Bando, H., Thess, A. and Smalley, R., Science 278, 100 (1996); S.N. Song, X.K. Wang, R.P.H. Chang and J.B. Ketterson, Phys. Rev. Lett. 72, 697 (1994); L. Langer, L. Stockman, J.P. Heremans, V. Bayot, C.H. Olk, C. Van Haesendonck, Y. Bruynseraede and J.P. Issi, J. Mater. Res. 9, 927 (1994); L. Langer, V. Bayot, E. Grivei, J.P. Issi, J.P. Heremans, C.H. Olk, L. Stockman, C. Van Haesendonck and Y. Bruynseraede, Phys. Rev. Lett. 76, 479 (1996); S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Georliga and C. Dekker, Nature 386, 474 (1997); A. Bachtold, C. Strunk, J.P. Salvetat, J.M. Bonnard, L. Forré, T. Nussbaumer and C. Schonenberger, Nature 397, 673 (1999).CrossRefGoogle Scholar
[9] Bezryadin, A., Verschueren, A.R.M., Tans, S.J. and Dekker, C., Phys. Rev. Lett. 80, 4036 (1998).CrossRefGoogle Scholar
[10] Paulson, S., Falvo, M.R., Snider, N., Helser, A., Hudson, T., Seeger, A., Taylor, R.M. II, Superfine, R. and Washburn, S., http://xxx.lanl.gov/abs/cond-mat/9905304, preprint (1999).Google Scholar
[11] Tian, W. and Datta, S., Phys. Rev. B 49, 5097 (1994).CrossRefGoogle Scholar
[12] Saito, R., Dresselhaus, G., Dresselhaus, M.S., Phys. Rev. B 53, 2044 (1996).CrossRefGoogle Scholar
[13] Chico, L., Benedict, L.X., Louie, S.G. and Cohen, M.L., Phys. Rev. B 54, 2600 (1996).CrossRefGoogle Scholar
[14] Tamura, R. and Tsukada, M., Phys. Rev. B 55, 4991 (1997); ibid, 58, 8120 (1998).CrossRefGoogle Scholar
[15] Anantran, M.P. and Govindan, T.R., Phys. Rev. B 58, 4882 (1998).CrossRefGoogle Scholar
[16] Farajian, A.A., Esfarjani, K. and Kawazoe, Y., Phys. Rev. Lett. 82, 5084 (1999).CrossRefGoogle Scholar
[17] Choi, H.J. and Ihm, J., Phys. Rev. B 59, 2267 (1999).CrossRefGoogle Scholar
[18] Rochefort, A., Lesage, F., Salahub, D.R. and Avouris, P., http://xxx.lanl.gov/abs/condmat/9904083, preprint (1999).Google Scholar
[19] Nardelli, M. Buongiorno, Phys. Rev. B, 60, 7828 (1999).CrossRefGoogle Scholar
[20] See, for instance, Dresselhaus, M.S., Dresselhaus, G. and Eklund, P.C., Science of fullerenes and carbon nanotubes (Academic Press, San Diego, 1996). We do not discuss the many-body effects that may lead to insulating behavior at temperatures near O K.Google Scholar
[21] Blase, X., Benedict, L.X., Shirley, E.L. and Louie, S.G., Phys. Rev. Lett. 72, 1878 (1994).CrossRefGoogle Scholar
[22] Ihm, J. and Louie, S.G., private communication (1999).Google Scholar
[23] Nardelli, M. Buongiorno and Bernholc, J., unpublished (1999).Google Scholar
[24] Crespi, V.H., Cohen, M.L. and Rubio, A., Phys. Rev. Lett. 79, 2093 (1997).CrossRefGoogle Scholar