Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-4nk8m Total loading time: 0.134 Render date: 2021-10-18T10:48:19.535Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Atomic Self-ordering in Heteroepitaxially Grown Semiconductor Quantum Dots due to Relaxation of External Lattice Mismatch Strains

Published online by Cambridge University Press:  17 March 2011

Peter Möck
Affiliation:
Department of Physics (MC 273), University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607- 7059, U.S.A; pmoeck@uic.edu
Teya Topuria
Affiliation:
Department of Physics (MC 273), University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607- 7059, U.S.A; pmoeck@uic.edu
Nigel D. Browning
Affiliation:
Department of Physics (MC 273), University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607- 7059, U.S.A; pmoeck@uic.edu
Robin J. Nicholas
Affiliation:
Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, U.K
Roger G. Booker
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, U.K
Get access

Abstract

Thermodynamic arguments are presented for the formation of atomic order in heteroepitaxially grown semiconductor quantum dots. From thermodynamics several significant properties of these systems can be derived, such as an enhanced critical temperature of the disorder-order transition, the possible co-existence of differently ordered domains of varying size and orientation, the possible existence of structures that have not been observed before in semiconductors, the occurrence of atomic order over time, and the occurrence of short range order when the growth proceeds at low temperatures. Transmission electron microscopy results support these predictions. Finally, we speculate on the cause for the observed increase in life time of (In,Ga)As/GaAs quantum dot lasers [H-Y. Liu et al., Appl. Phys. Lett. 79, 2868 (2001)].

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pearsall, T.P. (editor), “Quantum Semiconductor Devices and Technologies”, (Kluwer Academic Publishers, 2000).CrossRefGoogle Scholar
2. Kim, H.J. and Xie, Y.H., Appl. Phys. Lett. 79, 263 (2001).CrossRefGoogle Scholar
3. Joyce, P.B., Joyce, P.B. and Krzyzewski, T.J., Bell, G.R., Joyce, B.A., and Jones, T.S., Phys. Rev. B 58, R15981 (1998).CrossRefGoogle Scholar
4. Strassburg, M., Kutzer, V., Pohl, U. W., Hoffmann, A., Broser, I., Ledentsov, N. N., Bimberg, D., Rosenauer, A., Fischer, U., Gerthsen, D., I. Krestnikov, L., Maximov, M. V., Kop'ev, P. S., and Alferov, Zh.I., Appl. Phys. Lett. 72, 942 (1998).CrossRefGoogle Scholar
5. Walter, T. Cullis, A.G., Norris, D.J., and Hopkinson, M., Phys. Rev. Lett. 86, 2381 (2001).CrossRefGoogle Scholar
6. Möck, P., Topuria, T., Browning, N.D., Dobrowolska, M., Lee, S., Furdyna, J.K., Booker, G.R., Mason, N.J., and Nicholas, R.J., Appl. Phys. Lett. 79, 946 (2001).CrossRefGoogle Scholar
7. Möck, P., Topuria, T., Browning, N.D., Titova, L., Dobrowolska, M., Lee, S. and Furdyna, J.K., J. Electron. Mater. 30, 748 (2001).CrossRefGoogle Scholar
8. Möck, P., Topuria, T., Browning, N.D., Booker, G.R., Mason, N.J., Nicholas, R.J., Titova, L.V., Dobrowolska, M., Lee, S. and Furdyna, J.K., Mater. Res. Soc. Symp. 640, P6.3.1 (2000).Google Scholar
9. Topuria, T., Möck, P., Browning, N.D., Titova, L.V., Dobrowolska, M., Lee, S. and Furdyna, J.K., Mater. Res. Soc. Symp. 640, P8.3.1 (2000).Google Scholar
10. Marzari, N., Gironcoli, S. de, and Baroni, S., Phys. Rev. Lett. 72, 4001 (1994).CrossRefGoogle Scholar
11. Lanks, D.B., Wei, S–H., and Zunger, A., Phys. Rev. Lett. 69, 3766 (1992).CrossRefGoogle Scholar
12. Zunger, A. and Mahajan, S., “Atomic ordering and phase separation in epitaxial III-V alloys”, in Handbook on Semiconductors (Elsevier Science B.V., 1994), Ed. Moss, T.S., Vol. 3, Volume Ed. Mahajan, S., pp. 14471514.Google Scholar
13. Liu, H-Y., Xu, B., Wei, Y-Q, Ding, D., Qian, J-J., Han, Q., Liang, J-B, and Wang, Z-G., Appl. Phys. Lett. 79, 2869 (2001).Google Scholar
14. Bragg, W.L. and Williams, E.J., Proc. Roy. Soc. (London) A 145, 699 (1934).CrossRefGoogle Scholar
15. Bethe, H.A., Proc. Roy. Soc. (London) A150, 552 (1935).Google Scholar
16. Girifalco, L.A. and Welch, D.O., “Point Defects and Diffusion in Strained metals”, (Gordon and Breach, 1967).Google Scholar
17. Madelung, O., ed. “Semiconductors Group IV Elements and III-V Compounds, Data in Science and Technology” (Springer, 1991)Google Scholar
18. Internet based semiconductor data base at http://www.ioffe.rssi.ru/SVA/NSM/Semicond/InP/thermal.html. At the date this paper was written, this URL was deemed to be useful as source of data. Neither the author nor the Materials Research Society warrants or assures liability for the content or availably of this URL.Google Scholar
19. Cottrell, A.H., “Theoretical Structural Metallurgy”, (Edward Arnold Publ. 1965).Google Scholar
20. Seifert, W., chapter 14 in ref. [1], pp. 139181.Google Scholar
21. Möck, P., Booker, G.R., Mason, N.J., Alphandéry, E., and Nicholas, R.J., IEE Proc.-Optoelectron. 147, 209 (2000), and unpublished material.CrossRefGoogle Scholar
22. Alphandéry, E., Nicholas, R.J., Mason, N.J., Möck, P., and Booker, G.R., Appl. Phys. Lett. 74, 2041 (1999).CrossRefGoogle Scholar
23. Kim, C.S., Kim, M., Lee, S., Furdyna, J.K., Dobrowolska, M., Rho, H., Smith, L.M., Jackson, H.E., James, E.M., Xin, Y. and Browning, N.D., Phys. Rev. Lett. 85, 1124 (2000).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Atomic Self-ordering in Heteroepitaxially Grown Semiconductor Quantum Dots due to Relaxation of External Lattice Mismatch Strains
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Atomic Self-ordering in Heteroepitaxially Grown Semiconductor Quantum Dots due to Relaxation of External Lattice Mismatch Strains
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Atomic Self-ordering in Heteroepitaxially Grown Semiconductor Quantum Dots due to Relaxation of External Lattice Mismatch Strains
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *