Hostname: page-component-797576ffbb-cx6qr Total loading time: 0 Render date: 2023-12-07T11:15:41.177Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Atomic Scale Simulation of the Effect of Hydrogen on Dislocations in Zr

Published online by Cambridge University Press:  21 March 2011

C. Domain
EDF – R&D Département EMA, Les Renardières, F–77818 Moret sur Loing Cédex, France
A. Legris
Laboratoire de Métallurgie Physique et Génie des Matériaux, UMR 8517, Université de Lille I, F–59655 Villeneuve d'Ascq Cédex, France
Get access


In nuclear power plants, Zr–based cladding is corroded by the primary coolant. Concomitantly, it undergoes hydrogen pick–up which induces modifications of its mechanical properties, especially creep and recrystallization rates. Below 600K, the deformation in hcp Zr is partially controlled by screw dislocations, which due to their intricate core structure have reduced intrinsic mobility. Here, we address the possible hydrogen induced modifications of the core structure of screw dislocations. We used first–principle calculations based on the density functional theory to evaluate the interaction between hydrogen and screw dislocation cores and also to evaluate the hydrogen induced modifications of the prismatic and basal gamma surfaces. We show that the presence of hydrogen results in significant reductions of the stacking fault energies.

Research Article
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


[1] Bouffioux, P. and Rupa, N., ASTM STP 1354, 399421, Proceedings of the 12th international meeting of zirconium in the nuclear industry, Toronto, June (1998). P. Bouffioux and L. Legras, ANS, Proceedings of International Topical Meeting on Light Water Reactor Fuel Performance, Park City, Utah Apr 10– 13 2000. N. Rupa, PhD Thesis : “Effets de l'hydrogène et des hydrures sur le comportement viscoplastique du zircaloy– 4 recristallisé “UTC– France, April 2000.Google Scholar
[2] Farenc, S., Caillard, D. and Couret, A., Acta. Metall. Mater. 41, 27012709 (1993); ibid, Acta. Metall. Mater. 43, 3669– 3678 (1995).Google Scholar
[3] MRS Symp. Proceedings 491 1– 3 dec 1997, “Tight Binding Approach to Computational Materials Science”.Google Scholar
[4] Hohenberg, P. and Kohn, W., Phys. Rev. 136, 864 (1964); W. Kohn and L. Sham, Phys. Rev. 140, 1133 (1965).Google Scholar
[5] Domain, C. and Legris, A., in preparation.Google Scholar
[6] Duesbery, M. S. and Vitek, V., Acta. Mater. 46, 1481 (1998).10.1016/S1359-6454(97)00367-4Google Scholar
[7] Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993); ibid. 49, 14251 (1994); G. Kresse and J. Furthmüller, Phys. Rev. B 55, 11169 (1996); ibid, Comput. Mat. Sci. 6, 15 (1996).Google Scholar
[8] Vanderbilt, D., Phys. Rev. B 41, 7892 (1990); G. Kresse and J. Hafner, J. Phys.: Condens. Mater. 6, 8245 (1996).10.1103/PhysRevB.41.7892Google Scholar
[9] Perdew, J. P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J. and Fiolhais, C., Phys. Rev. B 46, 6671 (1992).Google Scholar
[10] Jomard, G., Petit, T., Pasturel, A., Magaud, L., Kresse, G. and Hafner, J., Phys. Rev. B 59, 4044 (1999); G. Jomard, T. Petit, L. Magaud and A. Pasturel, Phys. Rev. B 60, 15624 (1999).10.1103/PhysRevB.59.4044Google Scholar
[11] MacEwen, S.R., Coleman, C.E. and Ells, C.E., Acta Metall. 33, 753757 (1985).Google Scholar
[12] Legrand, B., Phil. Mag. B 49, 171184 (1984).10.1080/13642818408227636Google Scholar