Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-2wqtr Total loading time: 0.225 Render date: 2021-09-22T11:48:07.258Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Artificially Atomic-scale Ordered Superlattice Alloys for Thermoelectric Applications

Published online by Cambridge University Press:  01 February 2011

S. Cho
Affiliation:
Dept. of Physics & Astronomy, Northwestern University, Evanston, IL 60208
Y. Kim
Affiliation:
Dept. of Physics & Astronomy, Northwestern University, Evanston, IL 60208
A. DiVenere
Affiliation:
Dept. of Physics & Astronomy, Northwestern University, Evanston, IL 60208
G. K. L. Wong
Affiliation:
Dept. of Physics & Astronomy, Northwestern University, Evanston, IL 60208
A. J. Freeman
Affiliation:
Dept. of Physics & Astronomy, Northwestern University, Evanston, IL 60208
J. B. Ketterson
Affiliation:
Dept. of Physics & Astronomy, Northwestern University, Evanston, IL 60208
L. J. Olafsen
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375–5338
I. Vurgaftman
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375–5338
J. R. Meyer
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375–5338
C. A. Hoffman
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375–5338
G. Chen
Affiliation:
Mechanical & Aerospace Engineering Dept., Univ. of California, Los Angeles, CA 90095.
Get access

Abstract

We report artificially atomic-scale ordered superlattice alloy systems, new scheme to pursue high-ZT materials. We have fabricated Bi/Sb superlattice alloys that are artificially ordered on the atomic scale using MBE, confirmed by the presence of XRD superlattice satellites. We have observed that the electronic structure can be modified from semimetal, through zero-gap, to semiconductor by changing the superlattice period and sublayer thicknesses using electrical resistivity, thermopower, and magneto-transport measurements. InSb/Bi superlattice alloys have also been prepared and studied using XRD and thermopower measurements, which shows that their thermoelectric transport properties can be modified in accordance with structural modification. This superlattice alloy scheme gives us one more tool to control and tune the electronic structure and consequently the thermoelectric properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 12727 (1993).CrossRefGoogle Scholar
2. Hicks, L. D., Harman, T. C., and Dresselhaus, M. S., Appl. Phys. Lett. 63, 3230 (1993).CrossRefGoogle Scholar
3. Harman, T. C., Spears, D. L., and Manfra, M. J., J. Electron. Mat. 25, 1121 (1996).CrossRefGoogle Scholar
4. Jain, A. L., Phys. Rev. 114, 1518 (1959).CrossRefGoogle Scholar
5. Golin, S., Phys. Rev. 176, 830 (1968).CrossRefGoogle Scholar
6. Tichovolski, E. J. and Mavroides, J. G., Solid State Commun. 7, 927 (1969).CrossRefGoogle Scholar
7. Oelgart, G., Schneider, G., Kraak, W. and Herrmann, R., Phys. Stat. Sol. (b) 74, K75 (1976).CrossRefGoogle Scholar
8. Yim, W. M. and Amith, A., Solid-State Electron. 15, 1141 (1972).CrossRefGoogle Scholar
9. Lenoir, B., Cassart, M., Michenaud, J.-P., Scherrer, H. and Scherrer, S., J. Phys. Chem. Solids 57, 89 (1996).CrossRefGoogle Scholar
10. Brown, D. M. and Silverman, S. J., Phys. Rev. 136, A290 (1964).CrossRefGoogle Scholar
11. Mendez, E. E., Misu, A., and Dresselhaus, M. S., Phys. Rev. B 24, 639 (1981).CrossRefGoogle Scholar
12. Lu, M., Zieve, R. J., van Hulst, A., Jaeger, H. M., Rosenbaum, T. F., and Radelaar, S., Phys. Rev. B 53, 1609 (1996).CrossRefGoogle Scholar
13. Morelli, D. T., Partin, D. L. and Heremans, J., Semicon. Sci. Technol. 5, S257 (1990).CrossRefGoogle Scholar
14. Brown, D. M. and Silverman, S. J., Phys. Rev. 136, A290(1964).CrossRefGoogle Scholar
15. Cho, S., DiVenere, A., Wong, G. K., Ketterson, J. B., and Meyer, J. R., Phys. Rev. B59, 10691 (1999).CrossRefGoogle Scholar
16. Zilko, J. L. and Greene, J. E., J. Appl. Phys. 51, 1549 (1980).Google Scholar
17. Lee, J. J., Kim, J. D., and Razeghi, M., Appl. Phys. Lett. 70, 3266 (1997).CrossRefGoogle Scholar
18. DiVenere, A., Yi, X. J., Hou, C. L., Wang, H. C., Ketterson, J. B., Wong, G. K., and Sou, I. K., Appl. Phys. Lett. 62, 2640 (1993).CrossRefGoogle Scholar
19. Cho, S., DiVenere, A., Wong, G. K., Ketterson, J. B., Meyer, J. R., Hong, J. I., Phys. Rev. B 54, 2324 (1998).CrossRefGoogle Scholar
20. Vurgaftman, I., Meyer, J. R., Hoffman, C. A., Cho, S., Ketterson, J. B., Faraone, L., Antoszewski, J. and Lindemuth, J. R., J. Electron. Mat. 28, 548 (1999).Google Scholar
21. Vurgaftman, , Meyer, J. R., Hoffman, C. A., Cho, S., DiVenere, A., Wong, G. K., and Ketterson, J. B., J. Phys: Condens. Matter 11, 5157 (1999).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Artificially Atomic-scale Ordered Superlattice Alloys for Thermoelectric Applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Artificially Atomic-scale Ordered Superlattice Alloys for Thermoelectric Applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Artificially Atomic-scale Ordered Superlattice Alloys for Thermoelectric Applications
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *