Hostname: page-component-7d684dbfc8-w65q4 Total loading time: 0 Render date: 2023-09-22T07:38:40.248Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

The Application of Silver Oxide Thin Films to Plasmon Photonic Devices

Published online by Cambridge University Press:  01 February 2011

Junji Tominaga
Affiliation:
Laboratory for Advanced Optical Technology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, 305-8562, Japan
Dorothea Büchel
Affiliation:
Laboratory for Advanced Optical Technology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, 305-8562, Japan
Christophe Mihalcea
Affiliation:
Laboratory for Advanced Optical Technology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, 305-8562, Japan
Takayuki Shima
Affiliation:
Laboratory for Advanced Optical Technology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, 305-8562, Japan
Toshio Fukaya
Affiliation:
Laboratory for Advanced Optical Technology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, 305-8562, Japan
Get access

Abstract

RF-magnetron sputtered thin films of silver oxide (AgOx) were recently applied to ultra-high density optical data storage. It has been elucidated that the AgOx film sandwiched by protection layers shows very attractive characteristics in strong light-scattering, local plasmon generation and super-resolution by focussing a laser beam on it. Especially, the combination with an active recording film (optical phase change or magneto-optical) used in the currently recordable optical disks improves the storage density and overcomes the diffraction limit. In this paper, we describe the basic characteristics of nano-scale light scattering centers generated in the AgOx films and the interaction with ultra-high density recorded mark patterns in a near-field region. In addition, we provide the structural transition of the AgOx film by thermal and laser annealing treatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hecht, E., Optics, Addison-Wesley, Massachusetts, 1987.Google Scholar
2. Betzig, E., Trautman, J. K., Wolfe, R., Gyorgy, E. M., Finn, P. L., Kryder, M. H. and Chang, C. H., Appl. Phys. Lett. 61, 142144 (1992).CrossRefGoogle Scholar
3. Betzig, E., Grubb, S. G., Chichester, R. J., DiGiovanni, D. J. and Weiner, J. S., Appl. Phys. Lett. 63, 35503552 (1993).CrossRefGoogle Scholar
4. Terris, B. D., Mamin, H. J., Rugar, D., Studenmund, W. R. and Kino, G. S., Appl. Phys. Lett. 65, 388390 (1994).CrossRefGoogle Scholar
5. Terris, B. D., Mamin, H. J. and Rugar, D., Appl. Phys. Lett. 68, 141143 (1996).CrossRefGoogle Scholar
6. Ukita, H., Katagiri, Y. and Nakada, H., SPIE 1499, 248 (1991).Google Scholar
7. Tominaga, J., Nakano, T. and Atoda, N., Appl. Phys. Lett., 73, 20782080 (1998).CrossRefGoogle Scholar
8. Tominaga, J., Nakano, T., Fukaya, T., Atoda, N., Fuji, H. and Sato, A., Jpn. J. Appl. Phys. 38, 40894093 (1999).CrossRefGoogle Scholar
9. Sato, A., Tominaga, J., Nakano, T., Fuji, H. and Atoda, N., SPIE 3864, 157159 (1999).Google Scholar
10. Fuji, H., Katayama, H., Tominaga, J., Men, L., Nakano, T. and Atoda, N., Jpn. J. Appl. Phys. 39, 980981 (2000).CrossRefGoogle Scholar
11. Tominaga, J., Fuji, H., Sato, A., Nakano, T., Atoda, N., Jpn. J. Appl. Phys. 39, 957961 (2000).CrossRefGoogle Scholar
12. Tominaga, J., Buechel, D., Nakano, T., Fukaya, T., Atoda, N. and Fuji, H., SPIE 4081, 8694 (2000).Google Scholar
13. Tominaga, J., Kim, J. H., Buechel, D., Men, L., Fukuda, H., Nakano, T., Fukaya, T., Atoda, N., Fuji, H., Kikukawa, T., Sato, A., Tachibana, A., Yamakawa, Y. and Kumagai, M., Jpn. J. Appl. Phys. 40, 18311834 (2001).CrossRefGoogle Scholar
14. Peyser, L. A., Vinson, A. E., Bartko, A. P. and Dickson, R. M., Science 291, 103106 (2001).CrossRefGoogle Scholar
15. Li, Y. S., J. Raman Spectroscopy 25, 795797 (1994).CrossRefGoogle Scholar
16. Tominaga, J., Haratani, S., Uchiyama, K. and Takayama, S., Jpn. J. Appl. Phys. 31, 27572759 (1992).CrossRefGoogle Scholar
17. Haratani, S., Tominaga, J., Dohi, H. and Takayama, S., J. Appl. Phys. 76, 12971300 (1994).CrossRefGoogle Scholar
18. Buechel, D., Mihalcea, C., Fukaya, T., Atoda, N. and Tominaga, J., Mat. Res. Soc. Symp. Proc. 674, v3.2–v3.2.6 (2001).Google Scholar
19. Tominaga, J., Buechel, D., Nakano, T., Fukaya, T., Atoda, N. and Fuji, H., SPIE 4081, 8694 (2000).Google Scholar
20. Fukaya, T., Buechel, D., Shinbori, S., Tominaga, J., Atoda, N., Tsai, D. P. and Lin, W. C., J. Appl. Phys. 98, 61396144 (2001).CrossRefGoogle Scholar
21. Tominaga, J., Kim, J. H., Buechel, D., Men, L., Fukuda, H., Nakano, T., Fukaya, T., Atoda, N., Fuji, H., Kikukawa, T., Sato, A., Tachibana, A., Yamakawa, Y. and Kumagai, M., Jpn. J. Appl. Phys. 40, 18311834 (2001).CrossRefGoogle Scholar
22. Tominaga, J., Mihalcea, C., Buechel, D., Fukuda, H., Nakano, T., Atoda, N., Fuji, H. and Kikukawa, T., Appl. Phys. Lett. 78, 24172420 (2001).CrossRefGoogle Scholar
23. Buechel, D., Mihalcea, C., Fukaya, T., Atoda, N. and Tominaga, J., Appl. Phys. Lett. 79, 620622 (2001).CrossRefGoogle Scholar
24. Mihalcea, D. Buechel, Atoda, N. and Tominaga, J., J. Am. Chem. Soc. 123, 71727173 (2001).CrossRefGoogle Scholar