Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-dr4jh Total loading time: 0.186 Render date: 2021-06-19T21:32:19.786Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Anomalous Hall Effect in Gd-implanted Wurtzite Al x Ga1-x N High Electron Mobility Transistor Structures

Published online by Cambridge University Press:  01 February 2011

Fang-Yuh Lo
Affiliation:
fangyuhlo@mail.ndhu.edu.twfang-yuh.lo@rub.de, National Dong Hwa University, Department of Physics, Hualien, Taiwan
Alexander Melnikov
Affiliation:
alexander.melnikov@rub.de, Ruhr-Universität Bochum, Lehrstuhl für Angewandte Festkörperphysik, Bochum, Germany
Dirk Reuter
Affiliation:
dirk.reuter@rub.de, Ruhr-Universität Bochum, Lehrstuhl für Angewandte Festkörperphysik, Bochum, Germany
Yvon Cordier
Affiliation:
yc@crhea.cnrs.fr, CNRS-UPR10, Centre de Recherche sur l'Hétéro-Epitaxie et ses Applications, Valbonne, France
Andreas D. Wieck
Affiliation:
andreas.wieck@rub.de, Ruhr-Universität Bochum, Lehrstuhl für Angewandte Festkörperphysik, Bochum, Germany
Get access

Abstract

Al x Ga1- x N/GaN high electron mobility transistor (HEMT) structures grown by ammonia-source molecular beam epitaxy (MBE) are focused-ion-beam implanted with 300 keV Gd-ions at room temperature. The two-dimensional electron gas (2DEG) of these HEMT structures is located 27 nm underneath the sample surface. At 4.2 K, current-voltage characteristics across implanted rectangles show that the structures remain conducting up to a Gd-dose of 1×1012 cm-2. Anomalous Hall effect (AHE) is observed at T = 4.2 K for structures implanted with Gd, whose dose is 3×1011 cm-2. Measurements of AHE in the wide temperature range from 2.4 K to 300 K show that the magnetic ordering temperature of these structures is around 100 K. Therefore, these Gd-implanted HEMT structures containing the still conducting 2DEG, which is now embedded in a ferromagnetic semiconductor, open the possibility to polarize the electron spins.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Nakamura, S. und Fasol, G., The Blue Laser Diode, Springer, Berlin (1997).CrossRefGoogle Scholar
2. Chen, Q., Asif Khan, M., Yang, J. W., Sun, C. J., Shur, M. S., and Park, H., Appl. Phys. Lett. 69, 794 (1996).CrossRefGoogle Scholar
3. Wu, Y.-F., Keller, B. P., Keller, S., Kapolnek, D., Kozodoy, P., Denbaars, S. P., and Mishra, U. K., Appl. Phys. Lett. 69, 1438 (1996).CrossRefGoogle Scholar
4. Ambacher, O., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Schaff, W. J., Eastman, L. F., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W., and Hilsenbeck, J., J. Appl. Phys. 85, 3222 (1999).CrossRefGoogle Scholar
5. Wang, Y. Q. and Steckl, A. J., Appl. Phys. Lett. 82, 502 (2003).CrossRefGoogle Scholar
6. Nakanishi, Y., Wakahara, A., Okada, H., Yoshida, A., Ohshima, T., Itoh, H., Nakao, S., Saito, K., and Kim, Y. T., Nucl. Instr. and Meth. in Phys. Res. B 206, 1033 (2003).CrossRefGoogle Scholar
7. Wang, K., Martin, R. W., O'Donnell, K. P., Katchkanov, V., Nogales, E., Lorenz, K., Alves, E., Ruffenach, S., and Briot, O., Appl. Phys. Lett. 87, 112107 (2005).CrossRefGoogle Scholar
8. Dhar, S., Brandt, O., Ramsteiner, M., Sapega, V. F., and Ploog, K. H., Phys. Rev. Lett. 94, 037205 (2005).CrossRefGoogle Scholar
9. Dhar, S., Kammermeier, T., Ney, A., Pérez, L., Ploog, K. H., Melnikov, A., and Wieck, A. D., Appl. Phys. Lett. 89, 062503 (2006).CrossRefGoogle Scholar
10. Khaderbad, M. A., Dhar, S., Pérez, L., Ploog, K. H., Melnikov, A., and Wieck, A. D., Appl. Phys. Lett. 91, 072514 (2007).CrossRefGoogle Scholar
11. Han, S. Y., Hite, J., Thaler, G. T., Frazier, R. M., Abernathy, C. R., Pearton, S. J., Choi, H. K., Lee, W. O., Park, Y. D., Zavada, J. M., and Gwilliam, R., Appl. Phys. Lett. 88, 042102 (2006).CrossRefGoogle Scholar
12. Hejtmánek, J., Knížek, K., Maryško, M., Jirák, Z., Sedmidubský, D., Sofer, Z., Peřina, V., Hardtdegen, H., and Buchal, C., J. Appl. Phys. 103, 07D107 (2008).CrossRefGoogle Scholar
13. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science 287, 1019 (2000).CrossRefGoogle Scholar
14. Dietl, T., Ohno, H., and Matsukura, F., Phys. Rev. B 63, 195205 (2001).CrossRefGoogle Scholar
15. Lo, F.-Y., Melnikov, A., Reuter, D., Cordier, Y., and Wieck, A. D., Appl. Phys. Lett. 92, 112111 (2008).CrossRefGoogle Scholar
16. Semond, F., Cordier, Y., Grandjean, N., Natali, F., Damilano, B., Vézian, S., and Massies, J., phys. stat. sol. (a) 188, 501 (2001).3.0.CO;2-6>CrossRefGoogle Scholar
17. Courtesy of Ziegler, J. F. and Biersack, J. P., http://www.srim.org/. Google Scholar
18. Consejo, Ch., Contreras, S., Konczewicz, L., Lorenzini, P., Cordier, Y., Skierbiszewski, C., and Robert, J.L., phys. stat. sol. (c) 2, 1438 (2005).CrossRefGoogle Scholar
19. Ohno, H., Science 281, 951 (1998).CrossRefGoogle Scholar
20. Blundell, S., Magnetism in Condensed Matter (Oxford University Press, 2001), p. 190.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Anomalous Hall Effect in Gd-implanted Wurtzite Al x Ga1-x N High Electron Mobility Transistor Structures
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Anomalous Hall Effect in Gd-implanted Wurtzite Al x Ga1-x N High Electron Mobility Transistor Structures
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Anomalous Hall Effect in Gd-implanted Wurtzite Al x Ga1-x N High Electron Mobility Transistor Structures
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *